A cheminformatics-based methodology to incorporate safety considerations during accelerated process development

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-02-23 DOI:10.1016/j.compchemeng.2025.109066
Subhadra Devi Saripalli , Rajagopalan Srinivasan
{"title":"A cheminformatics-based methodology to incorporate safety considerations during accelerated process development","authors":"Subhadra Devi Saripalli ,&nbsp;Rajagopalan Srinivasan","doi":"10.1016/j.compchemeng.2025.109066","DOIUrl":null,"url":null,"abstract":"<div><div>The fine chemical industry regularly develops novel products for diverse applications and produces them at scale in multi-purpose, batch processes. These processes often involve highly hazardous chemicals and reactive chemical hazards. If an unacceptable risk is identified after the production route has been finalized, it would necessitate expensive redesigns and result in suboptimal risk management strategies with significant delays in time to market. It is, therefore, desirable to consider inherent safety analysis during route selection. The traditional methods for inherent safety analysis are not directly applicable to the fine chemicals industry which have unique characteristics; specifically, they require information on a large number of properties of materials and reactions, which are not usually available for novel pathways, especially at the route selection stage. While safety data could be determined experimentally, this would be time-consuming and expensive, especially if the route were to be rejected later in the process development. In this paper, we propose a practicable methodology that addresses these important challenges unique to fine chemicals industry. Our methodology leverages chemoinformatic models, which are increasingly becoming available and reliable, to estimate material and reaction properties. Various chemoinformatic models are systematically integrated into the process development workflow so that fire, toxicity, and reactivity hazards can be estimated when necessary, thus enabling inherently safer route selection. The methodology is illustrated using an industrial case study of Boscalid manufacture. Fifty-three safety-critical properties are predicted using various chemoinformatics methods and enable the identification of safety issues at the early stages of the process lifecycle.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109066"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000705","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The fine chemical industry regularly develops novel products for diverse applications and produces them at scale in multi-purpose, batch processes. These processes often involve highly hazardous chemicals and reactive chemical hazards. If an unacceptable risk is identified after the production route has been finalized, it would necessitate expensive redesigns and result in suboptimal risk management strategies with significant delays in time to market. It is, therefore, desirable to consider inherent safety analysis during route selection. The traditional methods for inherent safety analysis are not directly applicable to the fine chemicals industry which have unique characteristics; specifically, they require information on a large number of properties of materials and reactions, which are not usually available for novel pathways, especially at the route selection stage. While safety data could be determined experimentally, this would be time-consuming and expensive, especially if the route were to be rejected later in the process development. In this paper, we propose a practicable methodology that addresses these important challenges unique to fine chemicals industry. Our methodology leverages chemoinformatic models, which are increasingly becoming available and reliable, to estimate material and reaction properties. Various chemoinformatic models are systematically integrated into the process development workflow so that fire, toxicity, and reactivity hazards can be estimated when necessary, thus enabling inherently safer route selection. The methodology is illustrated using an industrial case study of Boscalid manufacture. Fifty-three safety-critical properties are predicted using various chemoinformatics methods and enable the identification of safety issues at the early stages of the process lifecycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Fifteen-minute consultation: Management of primary headaches in children.
IF 1 4区 医学Archives of Disease in Childhood-Education and Practice EditionPub Date : 2024-05-17 DOI: 10.1136/archdischild-2022-324085
Roqiah Alhashem, Susan Byrne, Dani Hall, Daniel E Lumsden, Prab Prabhakar
Management of raised intracranial pressure in children
IF 5.3 2区 医学Intensive and Critical Care NursingPub Date : 2000-10-01 DOI: 10.1054/iccn.2000.1511
Joanne Palmer
Fifteen-minute consultation: Emergency management of tracheostomy problems in children.
IF 1 4区 医学Archives of Disease in Childhood-Education and Practice EditionPub Date : 2019-08-01 DOI: 10.1136/archdischild-2018-316099
Elizabeth Ross, Kate Stephenson
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Interpretation of high-dimensional regression coefficients by comparison with linearized compressing features An integrated approach to the optimal design of sustainably efficient biorefinery supply chains A mixed-integer linear programming model proposal to determine material sustainability for new product development processes in production Advanced data-driven fault detection in gas-to-liquid plants Integrating solid direct air capture systems with green hydrogen production: Economic benefits and curtailment reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1