A design framework for high-fidelity human-centric digital twin of collaborative work cell in Industry 5.0

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Journal of Manufacturing Systems Pub Date : 2025-03-06 DOI:10.1016/j.jmsy.2025.02.018
Tianyu Wang , Zhihao Liu , Lihui Wang , Mian Li , Xi Vincent Wang
{"title":"A design framework for high-fidelity human-centric digital twin of collaborative work cell in Industry 5.0","authors":"Tianyu Wang ,&nbsp;Zhihao Liu ,&nbsp;Lihui Wang ,&nbsp;Mian Li ,&nbsp;Xi Vincent Wang","doi":"10.1016/j.jmsy.2025.02.018","DOIUrl":null,"url":null,"abstract":"<div><div>Digital Twin (DT) of a manufacturing system mainly involving materials and machines has been widely explored in the past decades to facilitate the mass customization of modern products. Recently, the new vision of Industry 5.0 has brought human operators back to the core part of work cells. To this end, designing human-centric DT systems is vital for an ergonomic and symbiotic working environment. However, one major challenge is the construction and utilization of high-fidelity digital human models. In the literature, preset universal human avatar models such as skeletons are mostly employed to represent the human operators, which overlooks the individual differences of physical traits. Besides, the fundamental utilization features such as motion tracking and procedure recognition still do not well address the practical issues such as occlusions and incomplete observations. To deal with the challenge, this paper proposes a systematic design framework to quickly and precisely build and utilize the human-centric DT systems. The mesh-based customized human operator models with rendered appearances are first generated within one minute from a short motion video. Then transformer-based deep learning networks are developed to realize the motion-related operator status synchronization in complex conditions. Extensive experiments on multiple real-world human–robot collaborative work cells show the superior performance of the proposed framework over the state-of-the-art.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 140-156"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000561","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Twin (DT) of a manufacturing system mainly involving materials and machines has been widely explored in the past decades to facilitate the mass customization of modern products. Recently, the new vision of Industry 5.0 has brought human operators back to the core part of work cells. To this end, designing human-centric DT systems is vital for an ergonomic and symbiotic working environment. However, one major challenge is the construction and utilization of high-fidelity digital human models. In the literature, preset universal human avatar models such as skeletons are mostly employed to represent the human operators, which overlooks the individual differences of physical traits. Besides, the fundamental utilization features such as motion tracking and procedure recognition still do not well address the practical issues such as occlusions and incomplete observations. To deal with the challenge, this paper proposes a systematic design framework to quickly and precisely build and utilize the human-centric DT systems. The mesh-based customized human operator models with rendered appearances are first generated within one minute from a short motion video. Then transformer-based deep learning networks are developed to realize the motion-related operator status synchronization in complex conditions. Extensive experiments on multiple real-world human–robot collaborative work cells show the superior performance of the proposed framework over the state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
期刊最新文献
Selection of manufacturing processes using graph neural networks A design framework for high-fidelity human-centric digital twin of collaborative work cell in Industry 5.0 Tool digital twin based on knowledge embedding for precision CNC machine tools: Wear prediction for collaborative multi-tool A novel intelligent assembly-adjustment method for aero-engine rotor system aimed at improving interface load-bearing performance MetaFactory: A cloud-based framework to configure and generate dynamic data structures from the STEP-NC knowledge graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1