Samuel Kim , Hyunsoo Hong , Jaemoon Jeong, Wonvin Kim, Wonki Kim, Gyumin Sim, Jieun Lee, Seong Su Kim
{"title":"Optimization of 3D printed truss meta-structure for structural performance and switchable vibration attenuation","authors":"Samuel Kim , Hyunsoo Hong , Jaemoon Jeong, Wonvin Kim, Wonki Kim, Gyumin Sim, Jieun Lee, Seong Su Kim","doi":"10.1016/j.compositesa.2025.108845","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a truss-based metastructure is proposed that simultaneously considers structural and vibration attenuation performance. To enhance vibration characteristics, the unit cell is designed to induce local resonance and the inertial amplification effect. Finite element analysis (FEA) was conducted to evaluate the compression stiffness and transmissibility of the unit cell with respect to its shape, and the switchable vibration characteristics depending on the presence of water were analyzed through dispersion relation. In addition, an optimal vibration attenuation metastructure satisfying the target stiffness was derived using a genetic algorithm. To validate the FEA results of the optimal structure, the metastructure was fabricated using stereolithography 3D printing, followed by structural and vibration tests. The fabricated truss-based metastructure showed good agreement with the vibration analysis results and excellent vibration reduction characteristics.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"193 ","pages":"Article 108845"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001393","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a truss-based metastructure is proposed that simultaneously considers structural and vibration attenuation performance. To enhance vibration characteristics, the unit cell is designed to induce local resonance and the inertial amplification effect. Finite element analysis (FEA) was conducted to evaluate the compression stiffness and transmissibility of the unit cell with respect to its shape, and the switchable vibration characteristics depending on the presence of water were analyzed through dispersion relation. In addition, an optimal vibration attenuation metastructure satisfying the target stiffness was derived using a genetic algorithm. To validate the FEA results of the optimal structure, the metastructure was fabricated using stereolithography 3D printing, followed by structural and vibration tests. The fabricated truss-based metastructure showed good agreement with the vibration analysis results and excellent vibration reduction characteristics.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.