Stress-state dependent phase-field modeling of ductile fracture using an enhanced adaptive meshless approach

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL Theoretical and Applied Fracture Mechanics Pub Date : 2025-02-28 DOI:10.1016/j.tafmec.2025.104909
Niloufar Salmanpour, Amir Khosravifard
{"title":"Stress-state dependent phase-field modeling of ductile fracture using an enhanced adaptive meshless approach","authors":"Niloufar Salmanpour,&nbsp;Amir Khosravifard","doi":"10.1016/j.tafmec.2025.104909","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents enhanced phase-field techniques that improve the failure analysis of elastic–plastic materials. Previous studies have employed constant energy thresholds to avoid premature failure. However, this criterion ignores the dependence of ductile fracture behavior on various loading conditions and stress states. This study introduces a crack propagation energy criterion that is based on the stress state, considering the key contributions of stress triaxiality and the Lode parameter to ductile failure. To optimize computational performance and minimize the constraints on mesh size, a meshless procedure based on the radial point interpolation method and the background decomposition integration technique is utilized for the numerical analysis of ductile fracture. In the proposed meshless method, a novel adaptive node refinement strategy, based on the Delaunay triangulation method is employed. Some numerical example problems are solved to highlight the ability of the proposed adaptive model in effectively and precisely replicating intricate ductile fracture behaviors, such as plastic localization, and the initiation, growth, and coalescence of cracks.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"138 ","pages":"Article 104909"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000679","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents enhanced phase-field techniques that improve the failure analysis of elastic–plastic materials. Previous studies have employed constant energy thresholds to avoid premature failure. However, this criterion ignores the dependence of ductile fracture behavior on various loading conditions and stress states. This study introduces a crack propagation energy criterion that is based on the stress state, considering the key contributions of stress triaxiality and the Lode parameter to ductile failure. To optimize computational performance and minimize the constraints on mesh size, a meshless procedure based on the radial point interpolation method and the background decomposition integration technique is utilized for the numerical analysis of ductile fracture. In the proposed meshless method, a novel adaptive node refinement strategy, based on the Delaunay triangulation method is employed. Some numerical example problems are solved to highlight the ability of the proposed adaptive model in effectively and precisely replicating intricate ductile fracture behaviors, such as plastic localization, and the initiation, growth, and coalescence of cracks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
期刊最新文献
Influence of pre-deformation on the fatigue crack growth and fracture behavior of Al-Cu-Li-Sc alloy Safety evaluation of defective polyethylene pipe under point load: Load ratio calculation method based on J-integral criterion Editorial Board Stress-state dependent phase-field modeling of ductile fracture using an enhanced adaptive meshless approach Effect of laser shock peening on microstructure and fatigue behavior of laser welded 7075 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1