{"title":"Intranasal administration of ergothioneine improves memory in a mouse model of multiple system atrophy","authors":"Kazuto Kimura , Makoto Timon Tanaka , Yasuo Miki , Tomonori Furukawa , Shuya Kasai , Taku Ozaki , Fumiaki Mori , Eri Shibuya , Koichi Wakabayashi","doi":"10.1016/j.bbrc.2025.151550","DOIUrl":null,"url":null,"abstract":"<div><div>No effective treatments have been established to delay or prevent the progression of multiple system atrophy (MSA), which is characterised by the accumulation of abnormal α-synuclein (α-Syn) species, including toxic α-Syn oligomers, in the central nervous system. In our previous study, we demonstrated that intranasal administration of trehalose reduces the levels of α-Syn oligomer by accelerating their conversion from toxic α-Syn oligomers to less harmful fibrils in a human α-Syn inducible MSA mouse model. This finding suggests that reducing α-Syn oligomers may be a crucial therapeutic strategy for MSA. The present study aimed to assess the potential of intranasal ergothioneine (ERG) administration in ameliorating MSA pathology within the MSA mouse model. A cognitive function test and electrophysiological analysis revealed that ERG administration significantly improved short-term spatial memory associated with hippocampal activity, with performance nearing normal levels. Immunohistochemical analysis showed that ERG treatment increased human α-Syn-positive areas within the dentate gyrus + dentate hilus regions of the hippocampus. By contrast, ERG treatment also led to a reduction in α-Syn phosphorylation in the cerebral cortex. Furthermore, immunoblotting confirmed that ERG treatment elevated expression levels of α-Syn monomer, while significantly reducing α-Syn dimer levels in the ERG-treated MSA model mice compared with untreated counterparts. Thus, the modification of α-Syn induced by ERG treatment may result in a reduction of α-Syn oligomers. Here, we demonstrate that intranasal administration of ERG improved short-term spatial memory in the MSA mouse model.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"756 ","pages":"Article 151550"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002645","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
No effective treatments have been established to delay or prevent the progression of multiple system atrophy (MSA), which is characterised by the accumulation of abnormal α-synuclein (α-Syn) species, including toxic α-Syn oligomers, in the central nervous system. In our previous study, we demonstrated that intranasal administration of trehalose reduces the levels of α-Syn oligomer by accelerating their conversion from toxic α-Syn oligomers to less harmful fibrils in a human α-Syn inducible MSA mouse model. This finding suggests that reducing α-Syn oligomers may be a crucial therapeutic strategy for MSA. The present study aimed to assess the potential of intranasal ergothioneine (ERG) administration in ameliorating MSA pathology within the MSA mouse model. A cognitive function test and electrophysiological analysis revealed that ERG administration significantly improved short-term spatial memory associated with hippocampal activity, with performance nearing normal levels. Immunohistochemical analysis showed that ERG treatment increased human α-Syn-positive areas within the dentate gyrus + dentate hilus regions of the hippocampus. By contrast, ERG treatment also led to a reduction in α-Syn phosphorylation in the cerebral cortex. Furthermore, immunoblotting confirmed that ERG treatment elevated expression levels of α-Syn monomer, while significantly reducing α-Syn dimer levels in the ERG-treated MSA model mice compared with untreated counterparts. Thus, the modification of α-Syn induced by ERG treatment may result in a reduction of α-Syn oligomers. Here, we demonstrate that intranasal administration of ERG improved short-term spatial memory in the MSA mouse model.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics