Huali Ren , Anli Yan , Lang Li , Zhenxin Zhang , Ning Li , Chong-zhi Gao
{"title":"Are you copying my prompt? Protecting the copyright of vision prompt for VPaaS via watermarking","authors":"Huali Ren , Anli Yan , Lang Li , Zhenxin Zhang , Ning Li , Chong-zhi Gao","doi":"10.1016/j.csi.2025.103992","DOIUrl":null,"url":null,"abstract":"<div><div>Visual Prompt Learning (VPL) reduces resource consumption by avoiding updates to pre-trained model parameters and instead learns input perturbations, a visual prompts, added to downstream task data for predictions. Designing high-quality prompts requires significant expertise and time-consuming optimization, leading to the emergence of Visual Prompts as a Service (VPaaS), where developers monetize well-crafted prompts by providing them to authorized customers.However, in cloud computing environments, prompts can be easily copied and redistributed, posing serious risks to the intellectual property (IP) of VPaaS developers.</div><div>To address this, we propose WVPrompt, the first method for protecting visual prompts via watermarking in a black-box setting. WVPrompt consists of two components: prompt watermarking and prompt verification. Specifically, it utilizes a poison-only backdoor attack method to embed a watermark into the prompt, and then employs a hypothesis-testing approach for remote verification of prompt ownership. Extensive experiments were conducted on three well-known benchmark datasets and three popular pre-trained models: RN50, BiT-M, and Instagram. The experimental results demonstrate that WVPrompt is efficient, harmless, and robust to various adversarial operations, making it a reliable solution for securing visual prompts in cloud-based applications.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"94 ","pages":"Article 103992"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000212","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Visual Prompt Learning (VPL) reduces resource consumption by avoiding updates to pre-trained model parameters and instead learns input perturbations, a visual prompts, added to downstream task data for predictions. Designing high-quality prompts requires significant expertise and time-consuming optimization, leading to the emergence of Visual Prompts as a Service (VPaaS), where developers monetize well-crafted prompts by providing them to authorized customers.However, in cloud computing environments, prompts can be easily copied and redistributed, posing serious risks to the intellectual property (IP) of VPaaS developers.
To address this, we propose WVPrompt, the first method for protecting visual prompts via watermarking in a black-box setting. WVPrompt consists of two components: prompt watermarking and prompt verification. Specifically, it utilizes a poison-only backdoor attack method to embed a watermark into the prompt, and then employs a hypothesis-testing approach for remote verification of prompt ownership. Extensive experiments were conducted on three well-known benchmark datasets and three popular pre-trained models: RN50, BiT-M, and Instagram. The experimental results demonstrate that WVPrompt is efficient, harmless, and robust to various adversarial operations, making it a reliable solution for securing visual prompts in cloud-based applications.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.