A computational approach for MHC-restricted multi-epitope vaccine design targeting Oropouche virus structural proteins

IF 2.1 3区 医学 Q2 PARASITOLOGY Acta tropica Pub Date : 2025-03-01 DOI:10.1016/j.actatropica.2025.107575
Letícia Barbosa Silva , Laura Leone da Silva , Leonardo Pereira de Araújo , Evandro Neves Silva, Patrícia Paiva Corsetti, Leonardo Augusto de Almeida
{"title":"A computational approach for MHC-restricted multi-epitope vaccine design targeting Oropouche virus structural proteins","authors":"Letícia Barbosa Silva ,&nbsp;Laura Leone da Silva ,&nbsp;Leonardo Pereira de Araújo ,&nbsp;Evandro Neves Silva,&nbsp;Patrícia Paiva Corsetti,&nbsp;Leonardo Augusto de Almeida","doi":"10.1016/j.actatropica.2025.107575","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, Brazil has recorded approximately 500,000 <em>Oropouche virus</em> (OROV) cases in the Amazon region, underscoring the growing global threat posed by emerging and reemerging viruses. Symptoms of OROV closely resemble those of <em>Dengue virus</em> and <em>Zika virus</em>, contributing to underreporting and underestimation of its true impact. In the absence of specific treatments, the development of vaccines becomes essential. This study aimed to identify immunogenic epitopes in three structural proteins of OROV and develop a multi-epitope vaccine candidate. <em>RefSeq</em> sequences of the nucleocapsid protein and the Gn and Gc glycoproteins were obtained from the National Center for Biotechnology Information Virus and submitted to epitope search in Immune Epitope Database. Antigenicity, allergenicity, stability, and toxicity analyses were conducted, and the approved epitopes were aligned to the global protein to remove transmembrane regions and N-glycosylation sites. Thirteen epitopes were selected and used to construct a multi-epitope vaccine candidate, with β-defensin and PADRE adjuvants. The protein demonstrated optimal antigenicity, low allergenicity, and satisfactory stability and solubility. Predictions of humoral and cellular immune responses were performed, indicating satisfactory results for three doses of the vaccine candidate. 3D modeling of the protein was performed, evaluating the molecular docking of the multi-epitope protein with TLR-2, TLR-3, TLR-6, and TLR-8 receptors. Our findings present a promising vaccine candidate against OROV, potentially protecting immunocompromised individuals and high-risk populations, and establishing a foundation for both <em>in vitro</em> and <em>in vivo</em> testing. The identified epitopes could also aid in immunodiagnostic test development, advancing surveillance and control strategies.</div></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":"263 ","pages":"Article 107575"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X25000531","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Brazil has recorded approximately 500,000 Oropouche virus (OROV) cases in the Amazon region, underscoring the growing global threat posed by emerging and reemerging viruses. Symptoms of OROV closely resemble those of Dengue virus and Zika virus, contributing to underreporting and underestimation of its true impact. In the absence of specific treatments, the development of vaccines becomes essential. This study aimed to identify immunogenic epitopes in three structural proteins of OROV and develop a multi-epitope vaccine candidate. RefSeq sequences of the nucleocapsid protein and the Gn and Gc glycoproteins were obtained from the National Center for Biotechnology Information Virus and submitted to epitope search in Immune Epitope Database. Antigenicity, allergenicity, stability, and toxicity analyses were conducted, and the approved epitopes were aligned to the global protein to remove transmembrane regions and N-glycosylation sites. Thirteen epitopes were selected and used to construct a multi-epitope vaccine candidate, with β-defensin and PADRE adjuvants. The protein demonstrated optimal antigenicity, low allergenicity, and satisfactory stability and solubility. Predictions of humoral and cellular immune responses were performed, indicating satisfactory results for three doses of the vaccine candidate. 3D modeling of the protein was performed, evaluating the molecular docking of the multi-epitope protein with TLR-2, TLR-3, TLR-6, and TLR-8 receptors. Our findings present a promising vaccine candidate against OROV, potentially protecting immunocompromised individuals and high-risk populations, and establishing a foundation for both in vitro and in vivo testing. The identified epitopes could also aid in immunodiagnostic test development, advancing surveillance and control strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
期刊最新文献
social-cultural context characteristics of Ethnicities on wildlife INTERACTION and consumption in the northern provinces of Thailand. Serologic and molecular survey for Rickettsia in small mammals in the Andes of Colombia. High genotype diversity and zoonotic potential of Enterocytozoon bieneusi in laboratory mice from two medical experimental animal centers. Antibodies against 12 infectious agents in free-ranging Eurasian beaver (Castor fiber L.) from the Czech Republic. Local necrosis induced by intralesional treatment with amphotericin B- deoxycholate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1