Zhousheng Wang , Jiahe Shen , Hua Dai , Jian Xu , Geng Yang , Hao Zhou
{"title":"Federated adaptive pruning with differential privacy","authors":"Zhousheng Wang , Jiahe Shen , Hua Dai , Jian Xu , Geng Yang , Hao Zhou","doi":"10.1016/j.future.2025.107783","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL), as an emerging distributed machine learning technique, reduces the computational burden on the central server through decentralization, while ensuring data privacy. It typically requires client sampling and local training for each iteration, followed by aggregation of the model on a central server. Although this distributed learning approach has positive implications for the preservation of privacy, it also increases the computational load of local clients. Therefore, lightweight efficient schemes become an indispensable tool to help reduce communication and computational costs in FL. In addition, due to the risk of model stealing attacks when uploaded, it is urgent to improve the level of privacy protection further. In this paper, we propose Federated Adaptive Pruning (FAP), a lightweight method that integrates FL with adaptive pruning by adjusting explicit regularization. We keep the model unchanged, but instead try to dynamically prune the data from large datasets during the training process to reduce the computational costs and enhance privacy protection. In each round of training, selected clients train with their local data and prune a portion of the data before uploading the model for server-side aggregation. The remaining data are reserved for subsequent computations. With this approach, selected clients can quickly refine their data at the beginning of training. In addition, we combine FAP with differential privacy to further strengthen data privacy. Through comprehensive experiments, we demonstrate the performance of FAP on different datasets with basic models, <em>e.g.</em>, CNN, and MLP, just to mention a few. Numerous experimental results show that our method is able to significantly prune the datasets to reduce computational overhead with minimal loss of accuracy. Compared to previous methods, we can obtain the lowest training error, and further improve the data privacy of client-side.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"169 ","pages":"Article 107783"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000780","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL), as an emerging distributed machine learning technique, reduces the computational burden on the central server through decentralization, while ensuring data privacy. It typically requires client sampling and local training for each iteration, followed by aggregation of the model on a central server. Although this distributed learning approach has positive implications for the preservation of privacy, it also increases the computational load of local clients. Therefore, lightweight efficient schemes become an indispensable tool to help reduce communication and computational costs in FL. In addition, due to the risk of model stealing attacks when uploaded, it is urgent to improve the level of privacy protection further. In this paper, we propose Federated Adaptive Pruning (FAP), a lightweight method that integrates FL with adaptive pruning by adjusting explicit regularization. We keep the model unchanged, but instead try to dynamically prune the data from large datasets during the training process to reduce the computational costs and enhance privacy protection. In each round of training, selected clients train with their local data and prune a portion of the data before uploading the model for server-side aggregation. The remaining data are reserved for subsequent computations. With this approach, selected clients can quickly refine their data at the beginning of training. In addition, we combine FAP with differential privacy to further strengthen data privacy. Through comprehensive experiments, we demonstrate the performance of FAP on different datasets with basic models, e.g., CNN, and MLP, just to mention a few. Numerous experimental results show that our method is able to significantly prune the datasets to reduce computational overhead with minimal loss of accuracy. Compared to previous methods, we can obtain the lowest training error, and further improve the data privacy of client-side.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.