Federated adaptive pruning with differential privacy

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2025-03-05 DOI:10.1016/j.future.2025.107783
Zhousheng Wang , Jiahe Shen , Hua Dai , Jian Xu , Geng Yang , Hao Zhou
{"title":"Federated adaptive pruning with differential privacy","authors":"Zhousheng Wang ,&nbsp;Jiahe Shen ,&nbsp;Hua Dai ,&nbsp;Jian Xu ,&nbsp;Geng Yang ,&nbsp;Hao Zhou","doi":"10.1016/j.future.2025.107783","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL), as an emerging distributed machine learning technique, reduces the computational burden on the central server through decentralization, while ensuring data privacy. It typically requires client sampling and local training for each iteration, followed by aggregation of the model on a central server. Although this distributed learning approach has positive implications for the preservation of privacy, it also increases the computational load of local clients. Therefore, lightweight efficient schemes become an indispensable tool to help reduce communication and computational costs in FL. In addition, due to the risk of model stealing attacks when uploaded, it is urgent to improve the level of privacy protection further. In this paper, we propose Federated Adaptive Pruning (FAP), a lightweight method that integrates FL with adaptive pruning by adjusting explicit regularization. We keep the model unchanged, but instead try to dynamically prune the data from large datasets during the training process to reduce the computational costs and enhance privacy protection. In each round of training, selected clients train with their local data and prune a portion of the data before uploading the model for server-side aggregation. The remaining data are reserved for subsequent computations. With this approach, selected clients can quickly refine their data at the beginning of training. In addition, we combine FAP with differential privacy to further strengthen data privacy. Through comprehensive experiments, we demonstrate the performance of FAP on different datasets with basic models, <em>e.g.</em>, CNN, and MLP, just to mention a few. Numerous experimental results show that our method is able to significantly prune the datasets to reduce computational overhead with minimal loss of accuracy. Compared to previous methods, we can obtain the lowest training error, and further improve the data privacy of client-side.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"169 ","pages":"Article 107783"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000780","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL), as an emerging distributed machine learning technique, reduces the computational burden on the central server through decentralization, while ensuring data privacy. It typically requires client sampling and local training for each iteration, followed by aggregation of the model on a central server. Although this distributed learning approach has positive implications for the preservation of privacy, it also increases the computational load of local clients. Therefore, lightweight efficient schemes become an indispensable tool to help reduce communication and computational costs in FL. In addition, due to the risk of model stealing attacks when uploaded, it is urgent to improve the level of privacy protection further. In this paper, we propose Federated Adaptive Pruning (FAP), a lightweight method that integrates FL with adaptive pruning by adjusting explicit regularization. We keep the model unchanged, but instead try to dynamically prune the data from large datasets during the training process to reduce the computational costs and enhance privacy protection. In each round of training, selected clients train with their local data and prune a portion of the data before uploading the model for server-side aggregation. The remaining data are reserved for subsequent computations. With this approach, selected clients can quickly refine their data at the beginning of training. In addition, we combine FAP with differential privacy to further strengthen data privacy. Through comprehensive experiments, we demonstrate the performance of FAP on different datasets with basic models, e.g., CNN, and MLP, just to mention a few. Numerous experimental results show that our method is able to significantly prune the datasets to reduce computational overhead with minimal loss of accuracy. Compared to previous methods, we can obtain the lowest training error, and further improve the data privacy of client-side.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Federated adaptive pruning with differential privacy Editorial Board Complex network knowledge-based field programmable gate arrays routing congestion prediction MMGCSyn: Explainable synergistic drug combination prediction based on multimodal fusion ARGO: Overcoming hardware dependence in distributed learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1