Electronic state reconfiguration induced by structural deformation at ultrathin non-van der Waals metal oxides to accelerate oxygen evolution reaction

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2025-03-04 DOI:10.1016/j.chemphys.2025.112683
Ming Meng , Shiwen Lv , Yi Song , Ying Wang , Yanling Hao , Yun Shan
{"title":"Electronic state reconfiguration induced by structural deformation at ultrathin non-van der Waals metal oxides to accelerate oxygen evolution reaction","authors":"Ming Meng ,&nbsp;Shiwen Lv ,&nbsp;Yi Song ,&nbsp;Ying Wang ,&nbsp;Yanling Hao ,&nbsp;Yun Shan","doi":"10.1016/j.chemphys.2025.112683","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical water splitting plays a critical role in developing new-type energy conversion devices, but has to face the technological bottleneck of slow anodic oxygen evolution reaction (OER). Herein, we propose an intriguing structural deformation strategy to reconfigure the electronic states at the ultrathin non-van der Waals metal oxides for facilitating the reaction kinetics of OER, in which half-filling 3d orbitals at magnetic sites will be more localized by compressive deformation and then enforce their bonding interaction and charge transfer with the intermediates. Compared with the traditional bulk materials surfaces, these ultrathin non-van der Waals metal oxides show reactive activity more sensitive to the external strain, because they have stronger interatomic interactions. The relevant analysis about d-band center and work functions all demonstrate that the exfoliation of non-van de Waals catalysts from their bulk materials have obvious advantage in improving the reactive activity.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112683"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000849","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting plays a critical role in developing new-type energy conversion devices, but has to face the technological bottleneck of slow anodic oxygen evolution reaction (OER). Herein, we propose an intriguing structural deformation strategy to reconfigure the electronic states at the ultrathin non-van der Waals metal oxides for facilitating the reaction kinetics of OER, in which half-filling 3d orbitals at magnetic sites will be more localized by compressive deformation and then enforce their bonding interaction and charge transfer with the intermediates. Compared with the traditional bulk materials surfaces, these ultrathin non-van der Waals metal oxides show reactive activity more sensitive to the external strain, because they have stronger interatomic interactions. The relevant analysis about d-band center and work functions all demonstrate that the exfoliation of non-van de Waals catalysts from their bulk materials have obvious advantage in improving the reactive activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄非范德华金属氧化物结构变形诱导的电子态重构加速析氧反应
电化学水分解是开发新型能量转换装置的关键技术,但却面临缓慢阳极析氧反应(OER)的技术瓶颈。在此,我们提出了一种有趣的结构变形策略来重新配置超薄非范德华金属氧化物的电子态,以促进OER反应动力学,其中磁性位置的半填充三维轨道将通过压缩变形更局部化,然后加强它们与中间体的键相互作用和电荷转移。与传统块状材料表面相比,这些超薄非范德华金属氧化物由于具有更强的原子间相互作用,对外部应变表现出更敏感的反应活性。对d带中心和功函数的分析均表明,非范德瓦尔斯催化剂从其本体材料中剥离对提高反应活性有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Mechanical property analysis of CuAl functionally graded alloys under different crystallographic orientations A soft/hard synergistic strategy to boost the interfacial properties of carbon fiber-reinforced polymers PFOS and PFOA interaction with organic chromophore bound serum albumin Construction and photocatalytic performance of dual Z-scheme BiVO4/AgBr/Ag2MoO4 heterojunction for enhanced photocatalytic degradation of rhodamine B Theoretical study on the photoelectric response properties of trilayer PtSe2/SnSeS/PtSe2 and SnSeS/PtSe2/SnSeS for digital media technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1