Ming Meng , Shiwen Lv , Yi Song , Ying Wang , Yanling Hao , Yun Shan
{"title":"Electronic state reconfiguration induced by structural deformation at ultrathin non-van der Waals metal oxides to accelerate oxygen evolution reaction","authors":"Ming Meng , Shiwen Lv , Yi Song , Ying Wang , Yanling Hao , Yun Shan","doi":"10.1016/j.chemphys.2025.112683","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical water splitting plays a critical role in developing new-type energy conversion devices, but has to face the technological bottleneck of slow anodic oxygen evolution reaction (OER). Herein, we propose an intriguing structural deformation strategy to reconfigure the electronic states at the ultrathin non-van der Waals metal oxides for facilitating the reaction kinetics of OER, in which half-filling 3d orbitals at magnetic sites will be more localized by compressive deformation and then enforce their bonding interaction and charge transfer with the intermediates. Compared with the traditional bulk materials surfaces, these ultrathin non-van der Waals metal oxides show reactive activity more sensitive to the external strain, because they have stronger interatomic interactions. The relevant analysis about d-band center and work functions all demonstrate that the exfoliation of non-van de Waals catalysts from their bulk materials have obvious advantage in improving the reactive activity.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112683"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000849","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting plays a critical role in developing new-type energy conversion devices, but has to face the technological bottleneck of slow anodic oxygen evolution reaction (OER). Herein, we propose an intriguing structural deformation strategy to reconfigure the electronic states at the ultrathin non-van der Waals metal oxides for facilitating the reaction kinetics of OER, in which half-filling 3d orbitals at magnetic sites will be more localized by compressive deformation and then enforce their bonding interaction and charge transfer with the intermediates. Compared with the traditional bulk materials surfaces, these ultrathin non-van der Waals metal oxides show reactive activity more sensitive to the external strain, because they have stronger interatomic interactions. The relevant analysis about d-band center and work functions all demonstrate that the exfoliation of non-van de Waals catalysts from their bulk materials have obvious advantage in improving the reactive activity.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.