A Study on the Translation of Spoken English from Speech to Text

Q3 Decision Sciences Journal of ICT Standardization Pub Date : 2024-12-01 DOI:10.13052/jicts2245-800X.1244
Ying Zhang
{"title":"A Study on the Translation of Spoken English from Speech to Text","authors":"Ying Zhang","doi":"10.13052/jicts2245-800X.1244","DOIUrl":null,"url":null,"abstract":"Rapid translation of spoken English is conducive to international communication. This paper briefly introduces a convolutional neural network (CNN) algorithm for converting English speech to text and a long short-term memory (LSTM) algorithm for machine translation of English text. The two algorithms were combined for spoken English translation. Then, simulation experiments were performed by comparing the speech recognition performance among the CNN algorithm, the hidden Markov model, and the back-propagation neural network algorithm and comparing the machine translation performance with the LSTM algorithm and the recurrent neural network algorithm. Moreover, the performance of the spoken English translation algorithms combining different recognition algorithms was compared. The results showed that the CNN speech recognition algorithm, the LSTM machine translation algorithm and the combined spoken English translation algorithm had the best performance and sufficient anti-noise ability. In conclusion, utilizing a CNN for converting English speech to texts and LSTM for machine translation of the converted English text can effectively enhance the performance of translating spoken English.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"12 4","pages":"429-441"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916565/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid translation of spoken English is conducive to international communication. This paper briefly introduces a convolutional neural network (CNN) algorithm for converting English speech to text and a long short-term memory (LSTM) algorithm for machine translation of English text. The two algorithms were combined for spoken English translation. Then, simulation experiments were performed by comparing the speech recognition performance among the CNN algorithm, the hidden Markov model, and the back-propagation neural network algorithm and comparing the machine translation performance with the LSTM algorithm and the recurrent neural network algorithm. Moreover, the performance of the spoken English translation algorithms combining different recognition algorithms was compared. The results showed that the CNN speech recognition algorithm, the LSTM machine translation algorithm and the combined spoken English translation algorithm had the best performance and sufficient anti-noise ability. In conclusion, utilizing a CNN for converting English speech to texts and LSTM for machine translation of the converted English text can effectively enhance the performance of translating spoken English.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
期刊最新文献
Application of Lenstra-Lenstra-Lovasz on Elliptic Curve Cryptosystem Using IOT Sensor Nodes A Study on the Translation of Spoken English from Speech to Text Security Monitoring and Early Warning of Negative Public Opinion on Social Networks Under Deep Learning A Meta-Learning Approach for Few-Shot Network Intrusion Detection Using Depthwise Separable Convolution Comparison of Different Machine Learning Algorithms in the Mental Health Assessment of College Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1