Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2025-02-20 DOI:10.1109/JRFID.2025.3544414
Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low
{"title":"Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform","authors":"Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low","doi":"10.1109/JRFID.2025.3544414","DOIUrl":null,"url":null,"abstract":"For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact (<inline-formula> <tex-math>$20\\times 40\\times 1.6$ </tex-math></inline-formula> mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"80-87"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10897826/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact ( $20\times 40\times 1.6$ mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
Wireless Single-Chip ECG Monitoring System With Bioimpedance Analysis Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform Real-Time Air Quality Monitoring: A Smart IoT System Using Low-Cost Sensors and 3-D Printing IEEE Council on RFID IEEE Journal of Radio Frequency Identification Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1