Origin of photoelectrochemical CO2 reduction on bare Cu(In,Ga)S2 (CIGS) thin films in aqueous media without co-catalysts†

EES catalysis Pub Date : 2025-01-15 DOI:10.1039/D4EY00233D
Rajiv Ramanujam Prabhakar, Sudhanshu Shukla, Haoyi Li, R. Soyoung Kim, Wei Chen, Jérôme Beaudelot, Jan D’Haen, Daniely Reis Santos, Philippe M. Vereecken, Gian-Marco Rignanese, Ethan J. Crumlin, Junko Yano, Bart Vermang and Joel W. Ager
{"title":"Origin of photoelectrochemical CO2 reduction on bare Cu(In,Ga)S2 (CIGS) thin films in aqueous media without co-catalysts†","authors":"Rajiv Ramanujam Prabhakar, Sudhanshu Shukla, Haoyi Li, R. Soyoung Kim, Wei Chen, Jérôme Beaudelot, Jan D’Haen, Daniely Reis Santos, Philippe M. Vereecken, Gian-Marco Rignanese, Ethan J. Crumlin, Junko Yano, Bart Vermang and Joel W. Ager","doi":"10.1039/D4EY00233D","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrochemical (PEC) CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) on semiconductors provides a promising route to convert CO<small><sub>2</sub></small> to fuels and chemicals. However, most semiconductors are not stable under CO<small><sub>2</sub></small>R conditions in aqueous media and require additional protection layers for long-term durability. To identify materials that would be stable and yield CO<small><sub>2</sub></small>R products in aqueous conditions, we investigated bare Cu(In,Ga)S<small><sub>2</sub></small> (CIGS) thin films. We synthesized CIGS thin films by sulfurizing a sputtered Cu–In–Ga metal stack. The as-synthesized CIGS thin films are Cu-deficient and have a high enough bandgap (1.7 eV) suitable to perform CO<small><sub>2</sub></small>R. The bare CIGS photocathodes had faradaic yields of 14% for HCOO<small><sup>−</sup></small> and 30% for CO in 0.1 M KHCO<small><sub>3</sub></small> electrolyte without the use of any co-catalysts under 1 sun illumination at an applied bias of −0.4 V <em>vs.</em> RHE and operated stably for 80 min. <em>Operando</em> Raman spectroscopy under CO<small><sub>2</sub></small>R conditions showed that the dominant A<small><sub>1</sub></small> mode of CIGS was unaffected during operation. Post-mortem X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis suggests that the CO<small><sub>2</sub></small>R stability could be related to self-protection caused by the <em>in situ</em> formation of oxides/hydroxides of Ga and In during operation. Density functional theory (DFT) calculations also reveal that Ga and In are the preferential sites for the adsorption of CO<small><sub>2</sub></small>R products, particularly HCOO<small><sup>−</sup></small>. These results show that CIGS is a promising semiconductor material for performing direct semiconductor/electrolyte reactions in aqueous media for the PEC CO<small><sub>2</sub></small>R.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 327-336"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00233d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00233d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) CO2 reduction (CO2R) on semiconductors provides a promising route to convert CO2 to fuels and chemicals. However, most semiconductors are not stable under CO2R conditions in aqueous media and require additional protection layers for long-term durability. To identify materials that would be stable and yield CO2R products in aqueous conditions, we investigated bare Cu(In,Ga)S2 (CIGS) thin films. We synthesized CIGS thin films by sulfurizing a sputtered Cu–In–Ga metal stack. The as-synthesized CIGS thin films are Cu-deficient and have a high enough bandgap (1.7 eV) suitable to perform CO2R. The bare CIGS photocathodes had faradaic yields of 14% for HCOO and 30% for CO in 0.1 M KHCO3 electrolyte without the use of any co-catalysts under 1 sun illumination at an applied bias of −0.4 V vs. RHE and operated stably for 80 min. Operando Raman spectroscopy under CO2R conditions showed that the dominant A1 mode of CIGS was unaffected during operation. Post-mortem X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis suggests that the CO2R stability could be related to self-protection caused by the in situ formation of oxides/hydroxides of Ga and In during operation. Density functional theory (DFT) calculations also reveal that Ga and In are the preferential sites for the adsorption of CO2R products, particularly HCOO. These results show that CIGS is a promising semiconductor material for performing direct semiconductor/electrolyte reactions in aqueous media for the PEC CO2R.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无助催化剂条件下Cu(In,Ga)S2 (CIGS)薄膜光电化学CO2还原的起源
半导体上的光电化学(PEC) CO2还原(CO2R)为将CO2转化为燃料和化学品提供了一条有前途的途径。然而,大多数半导体在水介质中的CO2R条件下不稳定,需要额外的保护层才能长期耐用。为了确定在水条件下稳定并产生CO2R产物的材料,我们研究了裸Cu(in,Ga)S2 (CIGS)薄膜。我们通过对溅射Cu-In-Ga金属堆进行硫化法制备了CIGS薄膜。合成的CIGS薄膜是cu缺乏的,并且具有足够高的带隙(1.7 eV),适合进行CO2R。在不使用任何辅助催化剂的情况下,在1个太阳光照下,在−0.4 V相对于RHE的偏压下,裸CIGS光电阴极在0.1 M KHCO3电解质中,HCOO -的法拉第产率为14%,CO的法拉第产率为30%,稳定运行80 min。CO2R条件下的Operando拉曼光谱表明,在运行过程中,CIGS的主导A1模式不受影响。尸检x射线光电子能谱(XPS)和x射线吸收光谱(XAS)分析表明,CO2R的稳定性可能与运行过程中Ga和in的氧化物/氢氧化物的原位形成引起的自我保护有关。密度泛函理论(DFT)计算也表明,Ga和In是CO2R产物,特别是HCOO−的优先吸附位点。这些结果表明,CIGS是一种很有前途的半导体材料,可用于PEC CO2R在水介质中进行直接的半导体/电解质反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oxygen vacancy-induced ferroelectric effect in (111) strontium titanate single crystals controls photoelectrochemical water oxidation Back cover Inside back cover Polymer-mediated exsolution and segregation of ruthenium oxides on β-MnO2 for durable water oxidation in proton-exchange membrane electrolyzers Oxide-derived low-coordination Ag catalysts enable efficient photovoltaic-driven electrochemical CO2 reduction in MEA electrolyzers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1