Sola Moon, Cheolhong Park, Yunyoung Jung, Kyeong-Sik Min, Hyunhyub Ko and Tae-Sik Yoon
{"title":"Reservoir computing determined by nonlinear weight dynamics in Gd-doped CeO2/CeO2 bi-layered oxide memristors†","authors":"Sola Moon, Cheolhong Park, Yunyoung Jung, Kyeong-Sik Min, Hyunhyub Ko and Tae-Sik Yoon","doi":"10.1039/D4TC05041J","DOIUrl":null,"url":null,"abstract":"<p >Reservoir computing (RC) is an effective framework for processing spatiotemporal signals. Memristors are well-suited for physical reservoirs in hardware-based RC systems due to their nonlinear functions and memory characteristics. This study experimentally demonstrates an RC system using Pt/Gd-doped CeO<small><sub>2</sub></small>(GDC)/CeO<small><sub>2</sub></small>/Pt memristors. These devices exhibit time-dependent weight updates and decay characteristics, which are critical for extracting spatial and temporal features in RC applications. While previous research has explored implementing RC systems by exploiting the nonlinearity of memristors, there is a lack of systematic research on factors affecting the nonlinearity of memristors and analyzing the reservoir states. Using the time-dependent dynamics of Pt/GDC/CeO<small><sub>2</sub></small>/Pt memristors, this study extracts reservoir states under different pulse conditions and systematically analyzes the factors affecting the extraction of these states. Our findings demonstrate that nonlinearly mapped reservoir states can be linearly separated to achieve high-performance recognition and prediction in complex spatiotemporal tasks in RC systems. Finally, the RC performance of the memristor shows up to 90.5% accuracy in 4-bit pattern verification using the Modified National Institute of Standards and Technology (MNIST) database.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 10","pages":" 4894-4909"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d4tc05041j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05041j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir computing (RC) is an effective framework for processing spatiotemporal signals. Memristors are well-suited for physical reservoirs in hardware-based RC systems due to their nonlinear functions and memory characteristics. This study experimentally demonstrates an RC system using Pt/Gd-doped CeO2(GDC)/CeO2/Pt memristors. These devices exhibit time-dependent weight updates and decay characteristics, which are critical for extracting spatial and temporal features in RC applications. While previous research has explored implementing RC systems by exploiting the nonlinearity of memristors, there is a lack of systematic research on factors affecting the nonlinearity of memristors and analyzing the reservoir states. Using the time-dependent dynamics of Pt/GDC/CeO2/Pt memristors, this study extracts reservoir states under different pulse conditions and systematically analyzes the factors affecting the extraction of these states. Our findings demonstrate that nonlinearly mapped reservoir states can be linearly separated to achieve high-performance recognition and prediction in complex spatiotemporal tasks in RC systems. Finally, the RC performance of the memristor shows up to 90.5% accuracy in 4-bit pattern verification using the Modified National Institute of Standards and Technology (MNIST) database.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors