Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm

Q2 Energy Energy Informatics Pub Date : 2025-03-06 DOI:10.1186/s42162-025-00494-9
Xinhua Wang, Yujie Jia, Hao Su, Hua Dang, Songfu Lu
{"title":"Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm","authors":"Xinhua Wang,&nbsp;Yujie Jia,&nbsp;Hao Su,&nbsp;Hua Dang,&nbsp;Songfu Lu","doi":"10.1186/s42162-025-00494-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00494-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00494-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合 DE 算法和内核搜索算法的清洁能源储充一体化系统优化调度方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm PIDE: Photovoltaic integration dynamics and efficiency for autonomous control on power distribution grids Demand response and energy dispatch system for intelligent buildings based on improved MOALO algorithm The design of a real-time monitoring and intelligent optimization data analysis framework for power plant production systems by 5G networks Hybrid energy storage system for intelligent electric vehicles incorporating improved PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1