{"title":"A Compact Ultralow-Profile Wideband and High-Efficiency Folded Transmitarray","authors":"Meizi Wu, Lu Guo","doi":"10.1155/mmce/5543052","DOIUrl":null,"url":null,"abstract":"<p>A compact ultralow-profile wideband and high-efficiency folded transmitarray antenna (FTA) is proposed in this letter. It consists of three parts: a top transmission surface (TS), a bottom reflection surface (RS), and an embedded compact planar feed. Using the principle of ray tracing and introducing additional phase compensation in the RS, the antenna profile can be significantly reduced, leading to a profile-to-diameter ratio (<i>H</i>/<i>D</i>) of only 0.13. Despite such an ultralow profile, the antenna overall performance still remains satisfactory. For design concept validation, a compact and ultralow-profile FTA is designed and prototyped. Measurement results demonstrate that the peak aperture efficiency of the FTA is 36%, with 1-dB/3-dB gain bandwidth of 10%/20%, respectively. These appealing characteristics make the proposed design very suitable for various high-gain applications where a low-profile and compact configuration is required.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/5543052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/5543052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A compact ultralow-profile wideband and high-efficiency folded transmitarray antenna (FTA) is proposed in this letter. It consists of three parts: a top transmission surface (TS), a bottom reflection surface (RS), and an embedded compact planar feed. Using the principle of ray tracing and introducing additional phase compensation in the RS, the antenna profile can be significantly reduced, leading to a profile-to-diameter ratio (H/D) of only 0.13. Despite such an ultralow profile, the antenna overall performance still remains satisfactory. For design concept validation, a compact and ultralow-profile FTA is designed and prototyped. Measurement results demonstrate that the peak aperture efficiency of the FTA is 36%, with 1-dB/3-dB gain bandwidth of 10%/20%, respectively. These appealing characteristics make the proposed design very suitable for various high-gain applications where a low-profile and compact configuration is required.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.