Eco-Evolutionary Dynamics of Plant–Soil Feedbacks Explain the Spread Potential of a Plant Invader Under Climate Warming and Biocontrol Herbivory

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-03-07 DOI:10.1111/gcb.70110
Yan Sun, Daniele Silvestro, Gregor H. Mathes, Marcel G. A. van der Heijden, Heinz Müller-Schärer
{"title":"Eco-Evolutionary Dynamics of Plant–Soil Feedbacks Explain the Spread Potential of a Plant Invader Under Climate Warming and Biocontrol Herbivory","authors":"Yan Sun,&nbsp;Daniele Silvestro,&nbsp;Gregor H. Mathes,&nbsp;Marcel G. A. van der Heijden,&nbsp;Heinz Müller-Schärer","doi":"10.1111/gcb.70110","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plant–soil feedbacks (PSFs) can contribute to the success of invasive plants. Despite strong evidence that plant genetic traits influence soil microbial communities and vice versa, empirical evidence exploring these feedbacks over evolutionary timescales, especially under climate change, remains limited. We conducted a 5-year field study of the annual invasive plant, <i>Ambrosia artemisiifolia</i> L., to examine how selection under climate warming and biocontrol insect herbivory shapes plant population genetics, soil properties, and microbial communities. After four generations under warming and herbivory, we collected seeds of the F<sub>4</sub> plant populations together with their conditioned soil for a common garden PSF experiment to explore how resulting PSFs patterns are influencing the performance and spread potential of <i>Ambrosia</i> under changing environmental conditions. This is especially relevant because our recent predictions point to a northward spread of <i>Ambrosia</i> in Europe and Asia under climate change, outpacing the spread of its insect biocontrol agent. We discovered that warming and herbivory significantly but differentially altered plant genetic composition and its soil microbial communities, with less pronounced effects on soil physicochemical properties. Our results indicate that both herbivory and warming generated negative PSFs. These negative PSFs favored plant growth of the seeds from the persistent soil seed bank growing in the conditioned soil under insect herbivory, and by this maintaining the <i>Ambrosia</i> population genetic diversity. They also enhanced the spread potential of warming-selected plant offspring, especially from warmer (southern) to colder (northern) climates. This can be explained by the observed decrease in soil pathogens occurrence under insect herbivory and by the especially strong genetic changes in plant populations under climate warming. Our findings provide insights into how climate warming and biocontrol management affect eco-evolutionary interactions between invasive plant populations and their soil environments, which are critical for predicting invasion dynamics in the context of global change.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70110","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Plant–soil feedbacks (PSFs) can contribute to the success of invasive plants. Despite strong evidence that plant genetic traits influence soil microbial communities and vice versa, empirical evidence exploring these feedbacks over evolutionary timescales, especially under climate change, remains limited. We conducted a 5-year field study of the annual invasive plant, Ambrosia artemisiifolia L., to examine how selection under climate warming and biocontrol insect herbivory shapes plant population genetics, soil properties, and microbial communities. After four generations under warming and herbivory, we collected seeds of the F4 plant populations together with their conditioned soil for a common garden PSF experiment to explore how resulting PSFs patterns are influencing the performance and spread potential of Ambrosia under changing environmental conditions. This is especially relevant because our recent predictions point to a northward spread of Ambrosia in Europe and Asia under climate change, outpacing the spread of its insect biocontrol agent. We discovered that warming and herbivory significantly but differentially altered plant genetic composition and its soil microbial communities, with less pronounced effects on soil physicochemical properties. Our results indicate that both herbivory and warming generated negative PSFs. These negative PSFs favored plant growth of the seeds from the persistent soil seed bank growing in the conditioned soil under insect herbivory, and by this maintaining the Ambrosia population genetic diversity. They also enhanced the spread potential of warming-selected plant offspring, especially from warmer (southern) to colder (northern) climates. This can be explained by the observed decrease in soil pathogens occurrence under insect herbivory and by the especially strong genetic changes in plant populations under climate warming. Our findings provide insights into how climate warming and biocontrol management affect eco-evolutionary interactions between invasive plant populations and their soil environments, which are critical for predicting invasion dynamics in the context of global change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Convergent Strategies for Leaf Traits in Tree Species From Divergent Habitats The Importance of Ditches and Canals in Global Inland Water CO2 and N2O Budgets Postglacial Recolonization of the Southern Ocean by Elephant Seals Occurred From Multiple Glacial Refugia Eco-Evolutionary Dynamics of Plant–Soil Feedbacks Explain the Spread Potential of a Plant Invader Under Climate Warming and Biocontrol Herbivory Timescale Matters: Finer Temporal Resolution Influences Driver Contributions to Global Soil Respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1