Chromite–Zeolite Catalysts for Syngas Conversion to Hydrocarbons: Insights into Oxide–Zeolite Interactions

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL ChemCatChem Pub Date : 2024-12-23 DOI:10.1002/cctc.202401810
Dr. Tobias Kull, Johannes Dahlhues, Andrea Wilmsen, Dr. Heiko Lohmann, Dr. Barbara Zeidler-Fandrich, Prof. Dr. Ulf-Peter Apfel
{"title":"Chromite–Zeolite Catalysts for Syngas Conversion to Hydrocarbons: Insights into Oxide–Zeolite Interactions","authors":"Dr. Tobias Kull,&nbsp;Johannes Dahlhues,&nbsp;Andrea Wilmsen,&nbsp;Dr. Heiko Lohmann,&nbsp;Dr. Barbara Zeidler-Fandrich,&nbsp;Prof. Dr. Ulf-Peter Apfel","doi":"10.1002/cctc.202401810","DOIUrl":null,"url":null,"abstract":"<p>A key challenge in modern society is developing the sustainable processes for producing vital chemicals, such as hydrocarbons, from renewable raw materials. The OX-ZEO process, which uses bifunctional catalysts to convert syngas into hydrocarbons, offers a potential alternative to the nonsustainable cracking process. Combining oxide materials with zeolites enables the direct synthesis of various hydrocarbon products with high selectivity. However, challenges remain, particularly regarding carbon monoxide (CO) conversion and unwanted carbon dioxide (CO<sub>2</sub>) generation. This study explores the impact of bimetallic chromites combined with H-MOR zeolite on the reaction outcome. Comparative experiments using only the oxide versus the bifunctional catalyst revealed a clear link between the methanol synthesis activity of the oxide and the overall activity in the OX-ZEO process. Furthermore, catalytic tests with monometallic oxides paired with H-MOR highlighted the role of the oxide's crystal structure in syngas conversion. These findings offer insights into the oxide–zeolite interactions, enabling the development of improved catalyst combinations that enhance the CO conversion, reduce CO<sub>2</sub> formation, and maintain high product selectivity.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202401810","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202401810","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge in modern society is developing the sustainable processes for producing vital chemicals, such as hydrocarbons, from renewable raw materials. The OX-ZEO process, which uses bifunctional catalysts to convert syngas into hydrocarbons, offers a potential alternative to the nonsustainable cracking process. Combining oxide materials with zeolites enables the direct synthesis of various hydrocarbon products with high selectivity. However, challenges remain, particularly regarding carbon monoxide (CO) conversion and unwanted carbon dioxide (CO2) generation. This study explores the impact of bimetallic chromites combined with H-MOR zeolite on the reaction outcome. Comparative experiments using only the oxide versus the bifunctional catalyst revealed a clear link between the methanol synthesis activity of the oxide and the overall activity in the OX-ZEO process. Furthermore, catalytic tests with monometallic oxides paired with H-MOR highlighted the role of the oxide's crystal structure in syngas conversion. These findings offer insights into the oxide–zeolite interactions, enabling the development of improved catalyst combinations that enhance the CO conversion, reduce CO2 formation, and maintain high product selectivity.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成气转化为碳氢化合物的铬铁矿-沸石催化剂:对氧化物-沸石相互作用的见解
现代社会面临的一个主要挑战是开发可持续工艺,利用可再生原料生产碳氢化合物等重要化学品。OX-ZEO 工艺使用双功能催化剂将合成气转化为碳氢化合物,为不可持续的裂解工艺提供了潜在的替代方案。将氧化物材料与沸石相结合,可直接合成具有高选择性的各种碳氢化合物产品。然而,挑战依然存在,特别是一氧化碳(CO)的转化和不必要的二氧化碳(CO2)的生成。本研究探讨了双金属铬铁矿与 H-MOR 沸石结合对反应结果的影响。仅使用氧化物与双功能催化剂的对比实验表明,氧化物的甲醇合成活性与 OX-ZEO 工艺的整体活性之间存在明显联系。此外,使用单金属氧化物与 H-MOR 配对进行的催化试验突出了氧化物晶体结构在合成气转化中的作用。这些发现有助于深入了解氧化物与沸石之间的相互作用,从而开发出能提高 CO 转化率、减少 CO2 生成并保持高产品选择性的改进型催化剂组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
期刊最新文献
Layered Hydroxide Salts as Catalysts for Cyclohexanone Ketalization: Impact of Synthetic Method and Composition Lanthanum-Promoted Cu/Al2O3: A High-Performance Catalyst for Glycerol to 1,2-Propanediol Under Industrially Relevant Conditions Bi2Se3/Bi0 Composite Nanoplates as a CO2 Reduction Electrocatalyst for Formic Acid Production Silanol Nest-Anchored Oligomeric Vanadium Oxides for Highly Stable and Efficient Propane Dehydrogenation Efficient Electroreduction of CO2 to CO via Complexation–Precipitation Synthesized Silver Phosphate Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1