MINFLUX achieves molecular resolution with minimal photons

IF 32.9 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2025-03-06 DOI:10.1038/s41566-025-01625-0
Lukas Scheiderer, Zach Marin, Jonas Ries
{"title":"MINFLUX achieves molecular resolution with minimal photons","authors":"Lukas Scheiderer, Zach Marin, Jonas Ries","doi":"10.1038/s41566-025-01625-0","DOIUrl":null,"url":null,"abstract":"Optical super-resolution microscopy is a key technology for structural biology that offers high imaging contrast and live-cell compatibility. Minimal (fluorescence) photon flux microscopy, or MINFLUX, is an emerging super-resolution technique that localizes single fluorophores with high spatiotemporal precision by targeted scanning of a patterned excitation beam featuring a minimum. MINFLUX offers super-resolution imaging with nanometre resolution. When tracking single fluorophores, MINFLUX can achieve nanometre spatial and submillisecond temporal resolution over long tracks, greatly outperforming camera-based techniques. In this Review, we present the basic working principle of MINFLUX and explain how it can reach high photon efficiencies. We then outline the advantages and limitations of MINFLUX, describe recent extensions and variations of MINFLUX and, finally, provide an outlook for future developments. The authors review MINFLUX super-resolution microscopy, outlining its advantages and limitations, recent progress, and an outlook for future developments.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 3","pages":"238-247"},"PeriodicalIF":32.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-025-01625-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical super-resolution microscopy is a key technology for structural biology that offers high imaging contrast and live-cell compatibility. Minimal (fluorescence) photon flux microscopy, or MINFLUX, is an emerging super-resolution technique that localizes single fluorophores with high spatiotemporal precision by targeted scanning of a patterned excitation beam featuring a minimum. MINFLUX offers super-resolution imaging with nanometre resolution. When tracking single fluorophores, MINFLUX can achieve nanometre spatial and submillisecond temporal resolution over long tracks, greatly outperforming camera-based techniques. In this Review, we present the basic working principle of MINFLUX and explain how it can reach high photon efficiencies. We then outline the advantages and limitations of MINFLUX, describe recent extensions and variations of MINFLUX and, finally, provide an outlook for future developments. The authors review MINFLUX super-resolution microscopy, outlining its advantages and limitations, recent progress, and an outlook for future developments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MINFLUX以最小的光子实现分子分辨率
光学超分辨率显微技术是结构生物学的一项关键技术,它提供了高成像对比度和活细胞兼容性。最小(荧光)光子通量显微镜,或称MINFLUX,是一种新兴的超分辨率技术,通过对具有最小光子通量的图案激发光束进行定向扫描,以高时空精度定位单个荧光团。MINFLUX提供纳米分辨率的超分辨率成像。当跟踪单个荧光团时,MINFLUX可以在长轨迹上实现纳米空间和亚毫秒时间分辨率,大大优于基于相机的技术。在这篇综述中,我们介绍了MINFLUX的基本工作原理,并解释了它是如何达到高光子效率的。然后,我们概述了MINFLUX的优点和局限性,描述了MINFLUX最近的扩展和变化,最后,提供了对未来发展的展望。作者回顾了MINFLUX超分辨率显微镜,概述了它的优点和局限性,最近的进展,并展望了未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Low-threshold lasing from colloidal quantum dots under quasi-continuous-wave excitation Light-based catalyst-free conversion of CH4 and CO2 An optical conveyor belt for 3,000 qubits New photodiodes ready to bridge optical and sub-THz communications A light-actuated microfluidic playground
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1