Kerry Blair, Raquel Martinez-Serra, Philippe Gosset, Sandra M Martín-Guerrero, Gábor M Mórotz, Joseph Atherton, Jacqueline C Mitchell, Andrea Markovinovic, Christopher C J Miller
{"title":"Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases.","authors":"Kerry Blair, Raquel Martinez-Serra, Philippe Gosset, Sandra M Martín-Guerrero, Gábor M Mórotz, Joseph Atherton, Jacqueline C Mitchell, Andrea Markovinovic, Christopher C J Miller","doi":"10.1186/s40478-025-01964-7","DOIUrl":null,"url":null,"abstract":"<p><p>Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many of the seemingly disparate physiological functions that are damaged in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). A number of studies have now demonstrated that ER-mitochondria signaling is perturbed in these diseases and there is evidence that this may be a driving mechanism in disease onset and progression. VAPB and PTPIP51 are ER-mitochondria tethering proteins; VAPB is an ER protein and PTPIP51 is an outer mitochondrial membrane protein and the two proteins interact to enable inter-organelle signaling. The VAPB-PTPIP51 interaction is disrupted in Alzheimer's disease, Parkinson's disease, FTD and ALS. Here we review the roles of VAPB and PTPIP51 in ER-mitochondria signaling and the mechanisms by which neurodegenerative disease insults may disrupt the VAPB-PTPIP51 interaction.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"49"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01964-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many of the seemingly disparate physiological functions that are damaged in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). A number of studies have now demonstrated that ER-mitochondria signaling is perturbed in these diseases and there is evidence that this may be a driving mechanism in disease onset and progression. VAPB and PTPIP51 are ER-mitochondria tethering proteins; VAPB is an ER protein and PTPIP51 is an outer mitochondrial membrane protein and the two proteins interact to enable inter-organelle signaling. The VAPB-PTPIP51 interaction is disrupted in Alzheimer's disease, Parkinson's disease, FTD and ALS. Here we review the roles of VAPB and PTPIP51 in ER-mitochondria signaling and the mechanisms by which neurodegenerative disease insults may disrupt the VAPB-PTPIP51 interaction.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.