Discovery of A Novel Regulator, 3β-Sulfate-5-Cholestenoic Acid, of Lipid Metabolism and Inflammation.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM American journal of physiology. Endocrinology and metabolism Pub Date : 2025-03-06 DOI:10.1152/ajpendo.00426.2024
Yaping Wang, Arun J Sanyal, Phillip Hylemon, Shunlin Ren
{"title":"Discovery of A Novel Regulator, 3β-Sulfate-5-Cholestenoic Acid, of Lipid Metabolism and Inflammation.","authors":"Yaping Wang, Arun J Sanyal, Phillip Hylemon, Shunlin Ren","doi":"10.1152/ajpendo.00426.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial oxysterols, cholestenoic acid (CA), 25-hydroxycholesterol (25HC), and 27-hydroxycholesterol (27HC), are potent regulators involved in many important biological events. This study aimed to investigate the metabolic pathways of these oxysterols and their roles between hepatocytes and macrophages. LC-MS-MS analysis showed a novel regulatory molecule, 3β-sulfate-5-cholestenoic acid (3SCA), following addition of CA in media culturing hepatocytes. Further study showed that 3SCA could also derived from 27HC. As comparison, 25HC was converted to 25HC3S, of which mostly remained in the cells and nuclei. Functional study showed that 3SCA significantly downregulated the expression of genes involved in lipid metabolism in hepatocytes and suppressed gene expression of pro-inflammatory cytokines induced by LPS in human macrophages. Based on the results, we conclude that 3SCA acts as a secretory regulator for the regulation of lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings shed light on understanding the unique metabolic pathways of these oxysterols and their possible roles in liver tissues.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00426.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial oxysterols, cholestenoic acid (CA), 25-hydroxycholesterol (25HC), and 27-hydroxycholesterol (27HC), are potent regulators involved in many important biological events. This study aimed to investigate the metabolic pathways of these oxysterols and their roles between hepatocytes and macrophages. LC-MS-MS analysis showed a novel regulatory molecule, 3β-sulfate-5-cholestenoic acid (3SCA), following addition of CA in media culturing hepatocytes. Further study showed that 3SCA could also derived from 27HC. As comparison, 25HC was converted to 25HC3S, of which mostly remained in the cells and nuclei. Functional study showed that 3SCA significantly downregulated the expression of genes involved in lipid metabolism in hepatocytes and suppressed gene expression of pro-inflammatory cytokines induced by LPS in human macrophages. Based on the results, we conclude that 3SCA acts as a secretory regulator for the regulation of lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings shed light on understanding the unique metabolic pathways of these oxysterols and their possible roles in liver tissues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
期刊最新文献
Discovery of A Novel Regulator, 3β-Sulfate-5-Cholestenoic Acid, of Lipid Metabolism and Inflammation. Hypothalamus and brainstem circuits in the regulation of glucose homeostasis. Plasma complement system markers and their association with cardiometabolic risk factors: an ethnic comparison of White European and Black African men. Maternal resistance exercise increases infant energy expenditure. VPS41 deletion triggers progressive loss of insulin stores and downregulation of β-cell identity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1