{"title":"Discovery of A Novel Regulator, 3β-Sulfate-5-Cholestenoic Acid, of Lipid Metabolism and Inflammation.","authors":"Yaping Wang, Arun J Sanyal, Phillip Hylemon, Shunlin Ren","doi":"10.1152/ajpendo.00426.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial oxysterols, cholestenoic acid (CA), 25-hydroxycholesterol (25HC), and 27-hydroxycholesterol (27HC), are potent regulators involved in many important biological events. This study aimed to investigate the metabolic pathways of these oxysterols and their roles between hepatocytes and macrophages. LC-MS-MS analysis showed a novel regulatory molecule, 3β-sulfate-5-cholestenoic acid (3SCA), following addition of CA in media culturing hepatocytes. Further study showed that 3SCA could also derived from 27HC. As comparison, 25HC was converted to 25HC3S, of which mostly remained in the cells and nuclei. Functional study showed that 3SCA significantly downregulated the expression of genes involved in lipid metabolism in hepatocytes and suppressed gene expression of pro-inflammatory cytokines induced by LPS in human macrophages. Based on the results, we conclude that 3SCA acts as a secretory regulator for the regulation of lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings shed light on understanding the unique metabolic pathways of these oxysterols and their possible roles in liver tissues.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00426.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial oxysterols, cholestenoic acid (CA), 25-hydroxycholesterol (25HC), and 27-hydroxycholesterol (27HC), are potent regulators involved in many important biological events. This study aimed to investigate the metabolic pathways of these oxysterols and their roles between hepatocytes and macrophages. LC-MS-MS analysis showed a novel regulatory molecule, 3β-sulfate-5-cholestenoic acid (3SCA), following addition of CA in media culturing hepatocytes. Further study showed that 3SCA could also derived from 27HC. As comparison, 25HC was converted to 25HC3S, of which mostly remained in the cells and nuclei. Functional study showed that 3SCA significantly downregulated the expression of genes involved in lipid metabolism in hepatocytes and suppressed gene expression of pro-inflammatory cytokines induced by LPS in human macrophages. Based on the results, we conclude that 3SCA acts as a secretory regulator for the regulation of lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings shed light on understanding the unique metabolic pathways of these oxysterols and their possible roles in liver tissues.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.