Lauren P Giesler, William T O'Brien, Jesse Bain, Gershon Spitz, Emily J Jaehne, Maarten van den Buuse, Sandy R Shultz, Richelle Mychasiuk, Stuart J McDonald
{"title":"Investigating the role of the brain-derived neurotrophic factor Val66Met polymorphism in repetitive mild traumatic brain injury outcomes in rats.","authors":"Lauren P Giesler, William T O'Brien, Jesse Bain, Gershon Spitz, Emily J Jaehne, Maarten van den Buuse, Sandy R Shultz, Richelle Mychasiuk, Stuart J McDonald","doi":"10.1186/s12993-025-00270-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mild traumatic brain injury (mTBI) poses a significant public health concern, particularly regarding repetitive injury, with outcomes ranging from acute neurobehavioral deficits to long-term impairments. While demographic factors like age and sex influence outcomes, the understanding of genetic contributions, particularly the role of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, remains limited. This study aimed to characterize acute effects of repetitive mTBI (rmTBI) in rats with the Val68Met SNP, the rodent equivalent of the human Val66Met, focusing on behavioral, fluid biomarker, and histological changes.</p><p><strong>Methods: </strong>Using a closed-head injury model, rats underwent five mTBIs over consecutive days. Behavioral assessments included sensorimotor function, anxiety-like behavior, spatial learning and memory, and nociceptive response. Plasma neurofilament light (NfL) levels served as a biomarker of axonal injury and immunohistochemistry evaluated microglial activation.</p><p><strong>Results: </strong>Sensorimotor deficits and increased anxiety-like behavior were found in rats with rmTBI, but these changes were not affected by sex or genotype. Plasma NfL levels were higher in rmTBI compared with sham rats, with levels greater in female rmTBI when compared with male rmTBI rats. Microglial activation was observed in the hypothalamus of injured rats, but was not influenced by genotype or sex.</p><p><strong>Conclusions: </strong>While the Val68Met SNP did not significantly influence acute responses to rmTBI in this study, further investigation into alternative functional and pathophysiological outcomes, as well as long-term effects, is required.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"21 1","pages":"5"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-025-00270-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mild traumatic brain injury (mTBI) poses a significant public health concern, particularly regarding repetitive injury, with outcomes ranging from acute neurobehavioral deficits to long-term impairments. While demographic factors like age and sex influence outcomes, the understanding of genetic contributions, particularly the role of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, remains limited. This study aimed to characterize acute effects of repetitive mTBI (rmTBI) in rats with the Val68Met SNP, the rodent equivalent of the human Val66Met, focusing on behavioral, fluid biomarker, and histological changes.
Methods: Using a closed-head injury model, rats underwent five mTBIs over consecutive days. Behavioral assessments included sensorimotor function, anxiety-like behavior, spatial learning and memory, and nociceptive response. Plasma neurofilament light (NfL) levels served as a biomarker of axonal injury and immunohistochemistry evaluated microglial activation.
Results: Sensorimotor deficits and increased anxiety-like behavior were found in rats with rmTBI, but these changes were not affected by sex or genotype. Plasma NfL levels were higher in rmTBI compared with sham rats, with levels greater in female rmTBI when compared with male rmTBI rats. Microglial activation was observed in the hypothalamus of injured rats, but was not influenced by genotype or sex.
Conclusions: While the Val68Met SNP did not significantly influence acute responses to rmTBI in this study, further investigation into alternative functional and pathophysiological outcomes, as well as long-term effects, is required.
期刊介绍:
A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.