Counterfactual Bidirectional Co-Attention Transformer for Integrative Histology-Genomic Cancer Risk Stratification.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-03-05 DOI:10.1109/JBHI.2025.3548048
Zheyi Ji, Yongxin Ge, Chijioke Chukwudi, Kaicheng U, Sophia Meixuan Zhang, Yulong Peng, Junyou Zhu, Hossam Zaki, Xueling Zhang, Sen Yang, Xiyue Wang, Yijiang Chen, Junhan Zhao
{"title":"Counterfactual Bidirectional Co-Attention Transformer for Integrative Histology-Genomic Cancer Risk Stratification.","authors":"Zheyi Ji, Yongxin Ge, Chijioke Chukwudi, Kaicheng U, Sophia Meixuan Zhang, Yulong Peng, Junyou Zhu, Hossam Zaki, Xueling Zhang, Sen Yang, Xiyue Wang, Yijiang Chen, Junhan Zhao","doi":"10.1109/JBHI.2025.3548048","DOIUrl":null,"url":null,"abstract":"<p><p>Applying deep learning to predict patient prognostic survival outcomes using histological whole-slide images (WSIs) and genomic data is challenging due to the morphological and transcriptomic heterogeneity present in the tumor microenvironment. Existing deep learning-enabled methods often exhibit learning biases, primarily because the genomic knowledge used to guide directional feature extraction from WSIs may be irrelevant or incomplete. This results in a suboptimal and sometimes myopic understanding of the overall pathological landscape, potentially overlooking crucial histological insights. To tackle these challenges, we propose the CounterFactual Bidirectional Co-Attention Transformer framework. By integrating a bidirectional co-attention layer, our framework fosters effective feature interactions between the genomic and histology modalities and ensures consistent identification of prognostic features from WSIs. Using counterfactual reasoning, our model utilizes causality to model unimodal and multimodal knowledge for cancer risk stratification. This approach directly addresses and reduces bias, enables the exploration of 'what-if' scenarios, and offers a deeper understanding of how different features influence survival outcomes. Our framework, validated across eight diverse cancer benchmark datasets from The Cancer Genome Atlas (TCGA), represents a major improvement over current histology-genomic model learning methods. It shows an average 2.5% improvement in c-index performance over 18 state-of-the-art models in predicting patient prognoses across eight cancer types. Our code is released at https://github.com/BusyJzy599/CFBCT-main.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3548048","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Applying deep learning to predict patient prognostic survival outcomes using histological whole-slide images (WSIs) and genomic data is challenging due to the morphological and transcriptomic heterogeneity present in the tumor microenvironment. Existing deep learning-enabled methods often exhibit learning biases, primarily because the genomic knowledge used to guide directional feature extraction from WSIs may be irrelevant or incomplete. This results in a suboptimal and sometimes myopic understanding of the overall pathological landscape, potentially overlooking crucial histological insights. To tackle these challenges, we propose the CounterFactual Bidirectional Co-Attention Transformer framework. By integrating a bidirectional co-attention layer, our framework fosters effective feature interactions between the genomic and histology modalities and ensures consistent identification of prognostic features from WSIs. Using counterfactual reasoning, our model utilizes causality to model unimodal and multimodal knowledge for cancer risk stratification. This approach directly addresses and reduces bias, enables the exploration of 'what-if' scenarios, and offers a deeper understanding of how different features influence survival outcomes. Our framework, validated across eight diverse cancer benchmark datasets from The Cancer Genome Atlas (TCGA), represents a major improvement over current histology-genomic model learning methods. It shows an average 2.5% improvement in c-index performance over 18 state-of-the-art models in predicting patient prognoses across eight cancer types. Our code is released at https://github.com/BusyJzy599/CFBCT-main.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Design, Performance Evaluation and Optimization for Intensive Care Networks Based on Non-Hierarchical Overflow Loss Systems. Detection of Early Parkinson's Disease by Leveraging Speech Foundation Models. MMFmiRLocEL: A multi-model fusion and ensemble learning approach for identifying miRNA subcellular localization using RNA structure language model. Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1