Ribosomal protein S25 promotes cell cycle entry for a productive BK polyomavirus infection.

J M Needham, T M Greco, I M Cristea, S R Thompson
{"title":"Ribosomal protein S25 promotes cell cycle entry for a productive BK polyomavirus infection.","authors":"J M Needham, T M Greco, I M Cristea, S R Thompson","doi":"10.1098/rstb.2023.0390","DOIUrl":null,"url":null,"abstract":"<p><p>Many viruses use alternate mechanisms to initiate protein translation owing to their limited coding capacity. The ribosomal protein S25 (RPS25/eS25) is required for efficient non-canonical mechanisms of translation initiation, such as internal ribosomal entry site (IRES) initiation or ribosomal shunting, but eS25 is not required for efficient cap-dependent initiation. Thus, eS25 knockdown can be used to evaluate whether a virus relies on alternative mechanisms of initiation. Since earlier studies suggest that simian virus 40 (SV40) uses an IRES to translate a minor capsid protein VP3, which is translated from the same transcript as VP2, we sought to test if BK polyomavirus (BKPyV) also used an IRES by examining viral production with and without eS25. Instead, we found that BKPyV required eS25 for robust viral production prior to gene expression, suggesting that it affected an early step in the viral life cycle. These studies revealed a role for eS25 in cell cycle control. When eS25 was knocked down in primary kidney cells, it decreased the proportion of cycling cells, causing arrest at both G0/G1 and G2/M. These data suggest that the timing of BKPyV infection depends on the initial cell cycle state of the host cell.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1921","pages":"20230390"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0390","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many viruses use alternate mechanisms to initiate protein translation owing to their limited coding capacity. The ribosomal protein S25 (RPS25/eS25) is required for efficient non-canonical mechanisms of translation initiation, such as internal ribosomal entry site (IRES) initiation or ribosomal shunting, but eS25 is not required for efficient cap-dependent initiation. Thus, eS25 knockdown can be used to evaluate whether a virus relies on alternative mechanisms of initiation. Since earlier studies suggest that simian virus 40 (SV40) uses an IRES to translate a minor capsid protein VP3, which is translated from the same transcript as VP2, we sought to test if BK polyomavirus (BKPyV) also used an IRES by examining viral production with and without eS25. Instead, we found that BKPyV required eS25 for robust viral production prior to gene expression, suggesting that it affected an early step in the viral life cycle. These studies revealed a role for eS25 in cell cycle control. When eS25 was knocked down in primary kidney cells, it decreased the proportion of cycling cells, causing arrest at both G0/G1 and G2/M. These data suggest that the timing of BKPyV infection depends on the initial cell cycle state of the host cell.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核糖体蛋白 S25 可促进细胞周期的进入,使 BK 多瘤病毒感染获得成功。
由于编码能力有限,许多病毒使用替代机制启动蛋白质翻译。核糖体蛋白S25 (RPS25/eS25)是有效的非规范翻译起始机制所必需的,例如内部核糖体进入位点(IRES)起始或核糖体分流,但eS25不是有效的帽依赖起始所必需的。因此,eS25敲低可用于评估病毒是否依赖于其他启动机制。由于早期的研究表明,猿猴病毒40 (SV40)使用IRES来翻译一个小的衣壳蛋白VP3, VP3是由与VP2相同的转录本翻译而来,我们试图通过检测带和不带eS25的病毒产生来测试BK多瘤病毒(BKPyV)是否也使用IRES。相反,我们发现BKPyV在基因表达之前需要eS25才能产生强大的病毒,这表明它影响了病毒生命周期的早期阶段。这些研究揭示了eS25在细胞周期控制中的作用。当eS25在原代肾细胞中被敲除时,它降低了循环细胞的比例,在G0/G1和G2/M均引起阻滞。这些数据表明,BKPyV感染的时间取决于宿主细胞的初始细胞周期状态。本文是“核糖体多样性及其对蛋白质合成、发育和疾病的影响”讨论会的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
The effect of habitat health and environmental change on cultural diversity and richness in animals. Strategies for integrating animal social learning and culture into conservation translocation practice. Culture and conservation in baleen whales. Fishy culture in a changing world. Conserving avian vocal culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1