Yang Xiao, Yuan Meng, Xiaoyu Feng, Longzhen He, Philip Shields, Sean Lee, Yanqin Wang, Zhifang Wang, Pingfan Ning, Hongwei Liu
{"title":"A 64 × 64 GaN Micro LED Monolithic Display Array: Fabrication and Light Crosstalk Analysis.","authors":"Yang Xiao, Yuan Meng, Xiaoyu Feng, Longzhen He, Philip Shields, Sean Lee, Yanqin Wang, Zhifang Wang, Pingfan Ning, Hongwei Liu","doi":"10.3390/mi16020207","DOIUrl":null,"url":null,"abstract":"<p><p>Monolithic micro LED display arrays show potential for application in small-area display modules, such as augmented reality (AR) displays. Due to the short distance between micro LEDs and the monolithic transparent substrate, a light crosstalk phenomenon exists between adjacent micro LED pixels, decreasing the array's display definition. In this paper, a 64 × 64 GaN micro LED monolithic display array was fabricated on a silicon-based drive circuit. The micro LED size was 20 μm × 20 μm, and the pitch between micro LEDs was 28 μm. To suppress the optical crosstalk between adjacent micro LEDs in the array, we etched a photonic crystal structure using a focused ion beam (FIB) on the micro LED sapphire substrate. Measurements of the micro LED nearfield electroluminescence (EL) and finite element method (FEM) calculations demonstrated that the light expansion was confined in the photonic crystal micro LED with a thinner substrate. The presented work provides references regarding the fabrication of monolithic micro LED arrays and the control of crosstalk in displays.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020207","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monolithic micro LED display arrays show potential for application in small-area display modules, such as augmented reality (AR) displays. Due to the short distance between micro LEDs and the monolithic transparent substrate, a light crosstalk phenomenon exists between adjacent micro LED pixels, decreasing the array's display definition. In this paper, a 64 × 64 GaN micro LED monolithic display array was fabricated on a silicon-based drive circuit. The micro LED size was 20 μm × 20 μm, and the pitch between micro LEDs was 28 μm. To suppress the optical crosstalk between adjacent micro LEDs in the array, we etched a photonic crystal structure using a focused ion beam (FIB) on the micro LED sapphire substrate. Measurements of the micro LED nearfield electroluminescence (EL) and finite element method (FEM) calculations demonstrated that the light expansion was confined in the photonic crystal micro LED with a thinner substrate. The presented work provides references regarding the fabrication of monolithic micro LED arrays and the control of crosstalk in displays.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.