Philipp Kästner, Basma Elsaka, Mustaqim Siddi Que Iskhandar, Steffen Liebermann, Roland Donatiello, Shujie Liu, Hartmut Hillmer
{"title":"Homogeneity of Electro-Mechanical and Optical Characteristics in Ring-Shaped MEMS Shutter Arrays with Subfield Addressing for Interference Microscopy.","authors":"Philipp Kästner, Basma Elsaka, Mustaqim Siddi Que Iskhandar, Steffen Liebermann, Roland Donatiello, Shujie Liu, Hartmut Hillmer","doi":"10.3390/mi16020168","DOIUrl":null,"url":null,"abstract":"<p><p>We present a MEMS array-based approach for micro-irises called \"ring shutter\", utilizing subfield addressing for applications in advanced micro-optics, such as interference microscopy. This experimental study is focused on investigating the homogeneity of electro-mechanical and optical characteristics within and between subfields of a lab demonstrator device. The characterization aims to ensure crosstalk-free and swift optical performance, as demonstrated in a previous study. For this purpose, the transmission in the initial state, actuation voltages, and response dynamics are measured for each electrode and the entire device, and the results are thoroughly compared. The measurements are conducted by expanding an existing optical actuation setup via tailored 3D-printed apertures, to isolate selected rings and zones. Evaluation of measurement data confirms the stable and crosstalk-free operation of the ring shutter. Both angular and radial homogeneity are robust and follow the expectations in the experiment. While transmission, actuation voltage and closing time slightly rise (up to 25%) with increased radial position represented by five discrete ring sections, the characteristics for different angular zones remain nearly constant. Response times are measured below 40 µs, actuation voltages do not exceed 60 V, and the overall transmission of the ring shutter yields 53.6%.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a MEMS array-based approach for micro-irises called "ring shutter", utilizing subfield addressing for applications in advanced micro-optics, such as interference microscopy. This experimental study is focused on investigating the homogeneity of electro-mechanical and optical characteristics within and between subfields of a lab demonstrator device. The characterization aims to ensure crosstalk-free and swift optical performance, as demonstrated in a previous study. For this purpose, the transmission in the initial state, actuation voltages, and response dynamics are measured for each electrode and the entire device, and the results are thoroughly compared. The measurements are conducted by expanding an existing optical actuation setup via tailored 3D-printed apertures, to isolate selected rings and zones. Evaluation of measurement data confirms the stable and crosstalk-free operation of the ring shutter. Both angular and radial homogeneity are robust and follow the expectations in the experiment. While transmission, actuation voltage and closing time slightly rise (up to 25%) with increased radial position represented by five discrete ring sections, the characteristics for different angular zones remain nearly constant. Response times are measured below 40 µs, actuation voltages do not exceed 60 V, and the overall transmission of the ring shutter yields 53.6%.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.