{"title":"TCAD Simulation Study of Electrical Performance of a Novel High-Purity Germanium Drift Detector.","authors":"Mingyang Wang, Zheng Li, Bo Xiong, Yongguang Xiao","doi":"10.3390/mi16020229","DOIUrl":null,"url":null,"abstract":"<p><p>High-purity germanium (HPGe) detectors occupy a prominent position in fields such as radiation detection and aerospace because of their excellent energy resolution and wide detection range. To achieve a broader detection range, conventional HPGe detectors often need to be expanded to cubic-centimeter-scale volumes. However, this increase in volume leads to a large detector area, which in turn increases the detector capacitance, affecting the detector's noise level and performance. To address this issue, this study proposes a novel high-purity germanium drift detector (HPGeDD). The design features a small-area central collecting cathode surrounded by concentric anode rings, with a resistive chain interposed between the anode rings to achieve self-dividing voltage. This design ensures that the detector's capacitance is only related to the area of the central collecting cathode, independent of the overall active area, thus achieving a balance between a small capacitance and large active area. Electrical performance simulations of the novel detector were conducted using the semiconductor simulation software Sentaurus TCAD (P-2019.03). The results show a smooth electric potential distribution within the detector, forming a lateral electric field, as well as a lateral hole drift channel precisely directed toward the collecting cathode. Furthermore, simulations of heavy ion incidence were performed to investigate the detector's carrier collection characteristics. The simulation results demonstrate that the HPGeDD exhibits advantages such as fast signal response and short collection time. The design proposal presented in this study offers a new solution to the problem of excessive capacitance in conventional HPGe detectors, expands their application scope, and provides theoretical guidance for subsequent improvements, optimizations, and practical manufacturing.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020229","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-purity germanium (HPGe) detectors occupy a prominent position in fields such as radiation detection and aerospace because of their excellent energy resolution and wide detection range. To achieve a broader detection range, conventional HPGe detectors often need to be expanded to cubic-centimeter-scale volumes. However, this increase in volume leads to a large detector area, which in turn increases the detector capacitance, affecting the detector's noise level and performance. To address this issue, this study proposes a novel high-purity germanium drift detector (HPGeDD). The design features a small-area central collecting cathode surrounded by concentric anode rings, with a resistive chain interposed between the anode rings to achieve self-dividing voltage. This design ensures that the detector's capacitance is only related to the area of the central collecting cathode, independent of the overall active area, thus achieving a balance between a small capacitance and large active area. Electrical performance simulations of the novel detector were conducted using the semiconductor simulation software Sentaurus TCAD (P-2019.03). The results show a smooth electric potential distribution within the detector, forming a lateral electric field, as well as a lateral hole drift channel precisely directed toward the collecting cathode. Furthermore, simulations of heavy ion incidence were performed to investigate the detector's carrier collection characteristics. The simulation results demonstrate that the HPGeDD exhibits advantages such as fast signal response and short collection time. The design proposal presented in this study offers a new solution to the problem of excessive capacitance in conventional HPGe detectors, expands their application scope, and provides theoretical guidance for subsequent improvements, optimizations, and practical manufacturing.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.