Angelica dahurica Polysaccharides Ameliorate Colitis by Reducing the Restriction of Gut Microbiota-Derived Imidazole Propionate on PPAR-γ Signaling Activation.
Jingyi Hu, Feng Xu, Lei Zhu, Yuan Cui, Ryan Au, Yanan Li, Yiheng Tong, Hong Shen
{"title":"Angelica dahurica Polysaccharides Ameliorate Colitis by Reducing the Restriction of Gut Microbiota-Derived Imidazole Propionate on PPAR-γ Signaling Activation.","authors":"Jingyi Hu, Feng Xu, Lei Zhu, Yuan Cui, Ryan Au, Yanan Li, Yiheng Tong, Hong Shen","doi":"10.1002/ptr.8466","DOIUrl":null,"url":null,"abstract":"<p><p>Angelica dahurica radix (ADR), the root of the botanical family Apiaceae (genus Angelica, species Angelica dahurica (Hoffm.)), has been used to treat colitis in clinical practice. The immunomodulatory effects of ADR are attributed to its polysaccharides (RP). However, its mechanism of action has not been elucidated. In this study, RP's structure was determined through nuclear magnetic resonance analysis. Dextran sulfate sodium-induced colitis in mice was utilized to assess the therapeutic efficacy of RP, while experiments involving fecal microbiota transplantation (FMT) and antibiotic treatment were performed to investigate the contribution of gut microbiota to RP's protective function. Non-targeted metabolomics was utilized to identify potential targets for elucidating the underlying mechanisms. RP is likely composed of (→4)-α-D-Glcp-(1→ and →4)-α-D-Galp-(1→). It effectively alleviated DSS-induced colitis by restoring the balance of the gut microbial community, a finding validated through FMT and antibiotic intervention experiments. Imidazole propionate (ImP) emerged as a potential target for RP's efficacy in treating colitis, which inhibits the activation of peroxisome proliferator-activated receptor gamma (PPAR-γ). Our findings suggest that RP may confer protection against colitis by activating the PPAR-γ signaling pathway through alleviating the constraint imposed by ImP.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8466","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Angelica dahurica radix (ADR), the root of the botanical family Apiaceae (genus Angelica, species Angelica dahurica (Hoffm.)), has been used to treat colitis in clinical practice. The immunomodulatory effects of ADR are attributed to its polysaccharides (RP). However, its mechanism of action has not been elucidated. In this study, RP's structure was determined through nuclear magnetic resonance analysis. Dextran sulfate sodium-induced colitis in mice was utilized to assess the therapeutic efficacy of RP, while experiments involving fecal microbiota transplantation (FMT) and antibiotic treatment were performed to investigate the contribution of gut microbiota to RP's protective function. Non-targeted metabolomics was utilized to identify potential targets for elucidating the underlying mechanisms. RP is likely composed of (→4)-α-D-Glcp-(1→ and →4)-α-D-Galp-(1→). It effectively alleviated DSS-induced colitis by restoring the balance of the gut microbial community, a finding validated through FMT and antibiotic intervention experiments. Imidazole propionate (ImP) emerged as a potential target for RP's efficacy in treating colitis, which inhibits the activation of peroxisome proliferator-activated receptor gamma (PPAR-γ). Our findings suggest that RP may confer protection against colitis by activating the PPAR-γ signaling pathway through alleviating the constraint imposed by ImP.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.