Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior.

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Visual Computing for Industry Biomedicine and Art Pub Date : 2025-03-06 DOI:10.1186/s42492-025-00187-w
Shuyuan Chen, Yingguang Li, Changqing Liu, Zhiwei Zhao, Zhibin Chen, Xiao Liu
{"title":"Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior.","authors":"Shuyuan Chen, Yingguang Li, Changqing Liu, Zhiwei Zhao, Zhibin Chen, Xiao Liu","doi":"10.1186/s42492-025-00187-w","DOIUrl":null,"url":null,"abstract":"<p><p>Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"4"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00187-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction. Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior. Explainable machine learning framework for cataracts recognition using visual features. Harmonized technical standard test methods for quality evaluation of medical fluorescence endoscopic imaging systems. Advancing breast cancer diagnosis: token vision transformers for faster and accurate classification of histopathology images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1