Charge-reversed small extracellular vesicles from human adipose-derived mesenchymal stromal cells attenuate renal fibrosis postacute kidney injury by inhibiting epithelial-mesenchymal transition progression in SD rat model.

IF 3.7 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotherapy Pub Date : 2025-02-15 DOI:10.1016/j.jcyt.2025.02.004
Wenwen Ping, Xiaoyan Xu, Yan Jiang, Rong Yang, Luwei Xu
{"title":"Charge-reversed small extracellular vesicles from human adipose-derived mesenchymal stromal cells attenuate renal fibrosis postacute kidney injury by inhibiting epithelial-mesenchymal transition progression in SD rat model.","authors":"Wenwen Ping, Xiaoyan Xu, Yan Jiang, Rong Yang, Luwei Xu","doi":"10.1016/j.jcyt.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 25% of patients with acute kidney injury (AKI) progress to chronic kidney disease, driven by the transition of renal tubular epithelial cells from epithelial to mesenchymal cells. Recent studies show that adipose-derived mesenchymal stromal cell-derived small extracellular vesicles (AMEV) can ameliorate renal fibrosis and injury. However, owing to poor retention, the limited bioavailability of AMEV hamper their therapeutic application. In this study, AMEV were extracted and modified with an ε-polylysine-polyethylene-distearoylphosphatidylethanolamine (PPD) polymer, which facilitated the reversal of the AMEV surface charge, thereby generating positively charged AMEV for the treatment of AKI. In a rat model of AKI, PPD modification significantly enhanced the renal retention of AMEV and effectively alleviated renal pathological damage. Further, RNA sequencing revealed that AMEV derived from adipose-derived mesenchymal stromal cells contains abundant microRNAs. We found that PPD modification significantly enhanced the bioavailability of AMEV and improved therapeutic effects in both in vivo and in vitro experiments. Furthermore, miR-100 enriched in AMEV targeted mTOR and suppressed the epithelial-mesenchymal transition phenotype of renal tubular epithelial cells, thereby alleviating renal fibrosis and promoting recovery of renal function postischemia-reperfusion. Overall, this study presents a promising therapeutic strategy and identifies clinical targets to combat renal fibrosis.</p>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcyt.2025.02.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately 25% of patients with acute kidney injury (AKI) progress to chronic kidney disease, driven by the transition of renal tubular epithelial cells from epithelial to mesenchymal cells. Recent studies show that adipose-derived mesenchymal stromal cell-derived small extracellular vesicles (AMEV) can ameliorate renal fibrosis and injury. However, owing to poor retention, the limited bioavailability of AMEV hamper their therapeutic application. In this study, AMEV were extracted and modified with an ε-polylysine-polyethylene-distearoylphosphatidylethanolamine (PPD) polymer, which facilitated the reversal of the AMEV surface charge, thereby generating positively charged AMEV for the treatment of AKI. In a rat model of AKI, PPD modification significantly enhanced the renal retention of AMEV and effectively alleviated renal pathological damage. Further, RNA sequencing revealed that AMEV derived from adipose-derived mesenchymal stromal cells contains abundant microRNAs. We found that PPD modification significantly enhanced the bioavailability of AMEV and improved therapeutic effects in both in vivo and in vitro experiments. Furthermore, miR-100 enriched in AMEV targeted mTOR and suppressed the epithelial-mesenchymal transition phenotype of renal tubular epithelial cells, thereby alleviating renal fibrosis and promoting recovery of renal function postischemia-reperfusion. Overall, this study presents a promising therapeutic strategy and identifies clinical targets to combat renal fibrosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytotherapy
Cytotherapy 医学-生物工程与应用微生物
CiteScore
6.30
自引率
4.40%
发文量
683
审稿时长
49 days
期刊介绍: The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.
期刊最新文献
Single-cell microencapsulation improves lung retention of endothelial colony-forming cells after intravascular delivery and unmasks therapeutic benefit in severe pulmonary arterial hypertension. Regulatory advancements in Japan's conditional and time-limited approval scheme for regenerative medical products: the first guidance on the approval scheme and the second review for full approval of the first conditional and time-limited approved cellular product, HeartSheet. Efficient large-scale expansion of cord blood-derived NK cells: leveraging lipopolysaccharide for enhanced NK cell production. HGF-DPSCs ameliorate asthma by regulating CCR1+ Th2 cells responses in mice pulmonary mucosa. Charge-reversed small extracellular vesicles from human adipose-derived mesenchymal stromal cells attenuate renal fibrosis postacute kidney injury by inhibiting epithelial-mesenchymal transition progression in SD rat model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1