Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text.

Muskan Garg, Msvpj Sathvik, Shaina Raza, Amrit Chadha, Sunghwan Sohn
{"title":"Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text.","authors":"Muskan Garg, Msvpj Sathvik, Shaina Raza, Amrit Chadha, Sunghwan Sohn","doi":"10.1609/icwsm.v18i1.31324","DOIUrl":null,"url":null,"abstract":"<p><p>The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (<i>classification</i>) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the <i>LoST</i> dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) <i>Trigger</i>: words that triggers mental disturbance, (ii) <i>LoST indicators</i>: text indicators emphasizing low self-esteem, and (iii) <i>Consequences</i>: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from <i>Trigger</i> and <i>Consequences</i> to a more comprehensive explanation, emphasizing <i>LoST indicators</i> while determining low self-esteem in Reddit posts.</p>","PeriodicalId":74525,"journal":{"name":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","volume":"18 ","pages":"422-434"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v18i1.31324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (classification) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) Trigger: words that triggers mental disturbance, (ii) LoST indicators: text indicators emphasizing low self-esteem, and (iii) Consequences: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation, emphasizing LoST indicators while determining low self-esteem in Reddit posts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text. Negative Associations in Word Embeddings Predict Anti-black Bias across Regions-but Only via Name Frequency. Correcting Sociodemographic Selection Biases for Population Prediction from Social Media. Classifying Minority Stress Disclosure on Social Media with Bidirectional Long Short-Term Memory. Classifying Minority Stress Disclosure on Social Media with Bidirectional Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1