An explainable GeoAI approach for the multimodal analysis of urban human dynamics: a case study for the COVID-19 pandemic in Rio de Janeiro.

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational urban science Pub Date : 2025-01-01 Epub Date: 2025-03-03 DOI:10.1007/s43762-025-00172-2
David Hanny, Dorian Arifi, Steffen Knoblauch, Bernd Resch, Sven Lautenbach, Alexander Zipf, Antonio Augusto de Aragão Rocha
{"title":"An explainable GeoAI approach for the multimodal analysis of urban human dynamics: a case study for the COVID-19 pandemic in Rio de Janeiro.","authors":"David Hanny, Dorian Arifi, Steffen Knoblauch, Bernd Resch, Sven Lautenbach, Alexander Zipf, Antonio Augusto de Aragão Rocha","doi":"10.1007/s43762-025-00172-2","DOIUrl":null,"url":null,"abstract":"<p><p>The recent COVID-19 pandemic has underscored the need for effective public health interventions during infectious disease outbreaks. Understanding the spatiotemporal dynamics of urban human behaviour is essential for such responses. Crowd-sourced geo-data can be a valuable data source for this understanding. However, previous research often struggles with the complexity and heterogeneity of such data, facing challenges in the utilisation of multiple modalities and explainability. To address these challenges, we present a novel approach to identify and rank multimodal time series features derived from mobile phone and geo-social media data based on their association with COVID-19 infection rates in the municipality of Rio de Janeiro. Our analysis spans from April 6, 2020, to August 31, 2021, and integrates 59 time series features. We introduce a feature selection algorithm based on Chatterjee's Xi measure of dependence to identify relevant features on an Área Programática da Saúde (health area) and city-wide level. We then compare the predictive power of the selected features against those identified by traditional feature selection methods. Additionally, we contextualise this information by correlating dependence scores and model error with 15 socio-demographic variables such as ethnic distribution and social development. Our results show that social media activity related to COVID-19, tourism and leisure activities was associated most strongly with infection rates, indicated by high dependence scores up to 0.88. Mobility data consistently yielded low to intermediate dependence scores, with the maximum being 0.47. Our feature selection approach resulted in better or equivalent model performance when compared to traditional feature selection methods. At the health-area level, local feature selection generally yielded better model performance compared to city-wide feature selection. Finally, we observed that socio-demographic factors such as the proportion of the Indigenous population or social development correlated with the dependence scores of both mobility data and health- or leisure-related semantic topics on social media. Our findings demonstrate the value of integrating localised multimodal features in city-level epidemiological analysis and offer a method for effectively identifying them. In the broader context of GeoAI, our approach provides a framework for identifying and ranking relevant spatiotemporal features, allowing for concrete insights prior to model building, and enabling more transparency when making predictions.</p>","PeriodicalId":72667,"journal":{"name":"Computational urban science","volume":"5 1","pages":"13"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational urban science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43762-025-00172-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The recent COVID-19 pandemic has underscored the need for effective public health interventions during infectious disease outbreaks. Understanding the spatiotemporal dynamics of urban human behaviour is essential for such responses. Crowd-sourced geo-data can be a valuable data source for this understanding. However, previous research often struggles with the complexity and heterogeneity of such data, facing challenges in the utilisation of multiple modalities and explainability. To address these challenges, we present a novel approach to identify and rank multimodal time series features derived from mobile phone and geo-social media data based on their association with COVID-19 infection rates in the municipality of Rio de Janeiro. Our analysis spans from April 6, 2020, to August 31, 2021, and integrates 59 time series features. We introduce a feature selection algorithm based on Chatterjee's Xi measure of dependence to identify relevant features on an Área Programática da Saúde (health area) and city-wide level. We then compare the predictive power of the selected features against those identified by traditional feature selection methods. Additionally, we contextualise this information by correlating dependence scores and model error with 15 socio-demographic variables such as ethnic distribution and social development. Our results show that social media activity related to COVID-19, tourism and leisure activities was associated most strongly with infection rates, indicated by high dependence scores up to 0.88. Mobility data consistently yielded low to intermediate dependence scores, with the maximum being 0.47. Our feature selection approach resulted in better or equivalent model performance when compared to traditional feature selection methods. At the health-area level, local feature selection generally yielded better model performance compared to city-wide feature selection. Finally, we observed that socio-demographic factors such as the proportion of the Indigenous population or social development correlated with the dependence scores of both mobility data and health- or leisure-related semantic topics on social media. Our findings demonstrate the value of integrating localised multimodal features in city-level epidemiological analysis and offer a method for effectively identifying them. In the broader context of GeoAI, our approach provides a framework for identifying and ranking relevant spatiotemporal features, allowing for concrete insights prior to model building, and enabling more transparency when making predictions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
An explainable GeoAI approach for the multimodal analysis of urban human dynamics: a case study for the COVID-19 pandemic in Rio de Janeiro. Application note: evaluation of the Gini coefficient at the county level in mainland China based on Luojia 1-01 nighttime light images Neighborhood effects and consequences of criminal justice contact: a research framework. Human Dynamics Research in GIScience: challenges and opportunities. The urban footprint of rural forced displacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1