Lea Hoffmann, Anika Baier, Lara Jorde, Michael Kamel, Jan-Hannes Schäfer, Kilian Schnelle, Alischa Scholz, Dmitry Shvarev, Jaslyn E.M. M. Wong, Kristian Parey, Dovile Januliene, Arne Moeller
{"title":"The ABC transporter MsbA in a dozen environments","authors":"Lea Hoffmann, Anika Baier, Lara Jorde, Michael Kamel, Jan-Hannes Schäfer, Kilian Schnelle, Alischa Scholz, Dmitry Shvarev, Jaslyn E.M. M. Wong, Kristian Parey, Dovile Januliene, Arne Moeller","doi":"10.1016/j.str.2025.02.002","DOIUrl":null,"url":null,"abstract":"High-resolution structure determination of membrane proteins typically requires reconstitution into artificial membrane mimics. The choice of the specific membrane substitute can strongly affect the protein’s specific activity, stability, and conformational spectrum, potentially leading to errors or misinterpretation during analysis. The bacterial ATP-binding cassette transporter MsbA is a prominent example of such environment-specific bias. Here, we present a systematic analysis of the conformational spectrum of MsbA, stabilized in a dozen environments, using cryoelectron microscopy (cryo-EM), and show pronounced feedback between the membrane mimetics and the transporter. Detergents generally favor wide inward-facing conformations while nanodiscs induce narrower conformations. Notably, only in three tested environments, MsbA samples the full movement of the nucleotide-binding domains, including narrow and wide conformations. We expect this study to serve as a blueprint for other membrane proteins, even where a structural reaction to the hydrophobic environment is not directly visible but still critical for the proteins’ function.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"16 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.02.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution structure determination of membrane proteins typically requires reconstitution into artificial membrane mimics. The choice of the specific membrane substitute can strongly affect the protein’s specific activity, stability, and conformational spectrum, potentially leading to errors or misinterpretation during analysis. The bacterial ATP-binding cassette transporter MsbA is a prominent example of such environment-specific bias. Here, we present a systematic analysis of the conformational spectrum of MsbA, stabilized in a dozen environments, using cryoelectron microscopy (cryo-EM), and show pronounced feedback between the membrane mimetics and the transporter. Detergents generally favor wide inward-facing conformations while nanodiscs induce narrower conformations. Notably, only in three tested environments, MsbA samples the full movement of the nucleotide-binding domains, including narrow and wide conformations. We expect this study to serve as a blueprint for other membrane proteins, even where a structural reaction to the hydrophobic environment is not directly visible but still critical for the proteins’ function.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.