{"title":"Ion dipole interaction and directional alignment enabled high piezoelectric property polyvinylidene fluoride for flexible electronics","authors":"Dinku Hazarika, Jiaqi Lu, Jianhui Wu, Muhammad Naeem Shah, Jie Li, Kaihang Zhang, Liangquan Xu, Chuanrui Chen, Zhen Cao, Hao Jin, Shurong Dong, Yuhui Huang, Qilong Zhang, Yongjun Wu, Jikui Luo","doi":"10.1038/s41528-025-00393-9","DOIUrl":null,"url":null,"abstract":"<p>Organic piezoelectric materials have attracted significant interest for applications in sensing, energy harvesting, and flexible electronics. However, its piezoelectric properties are yet to be improved. This study introduces a facile strategy to fabricate homogenous and dense polyvinylidene fluoride (PVDF) films with high piezoelectric performance via anhydrous CaCl<sub>2</sub> doping. The strong ion–dipole interaction between Ca<sup>2+</sup> and F atoms, along with directional dipole alignment under an electric field at elevated temperature, as verified by molecular dynamics simulations and material characterizations. This results in an impressive <i>β</i>-phase content of 92.78% and a piezoelectric coefficient of 29.26 pm/V. A piezoelectric device fabricated from this PVDF film delivers an output voltage exceeding 12 V under external pressure and maintains stability over 60,000 cycles. When integrated with an LC resonant circuit, it functions as a wireless sensor for real-time motion monitoring. This scalable approach significantly advances piezoelectric polymer performance for practical applications.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"12 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00393-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Organic piezoelectric materials have attracted significant interest for applications in sensing, energy harvesting, and flexible electronics. However, its piezoelectric properties are yet to be improved. This study introduces a facile strategy to fabricate homogenous and dense polyvinylidene fluoride (PVDF) films with high piezoelectric performance via anhydrous CaCl2 doping. The strong ion–dipole interaction between Ca2+ and F atoms, along with directional dipole alignment under an electric field at elevated temperature, as verified by molecular dynamics simulations and material characterizations. This results in an impressive β-phase content of 92.78% and a piezoelectric coefficient of 29.26 pm/V. A piezoelectric device fabricated from this PVDF film delivers an output voltage exceeding 12 V under external pressure and maintains stability over 60,000 cycles. When integrated with an LC resonant circuit, it functions as a wireless sensor for real-time motion monitoring. This scalable approach significantly advances piezoelectric polymer performance for practical applications.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.