New probe of dark matter-baryon interactions in compact stellar systems

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-03-05 DOI:10.1103/physrevd.111.l061302
Yang Ma, Zihui Wang
{"title":"New probe of dark matter-baryon interactions in compact stellar systems","authors":"Yang Ma, Zihui Wang","doi":"10.1103/physrevd.111.l061302","DOIUrl":null,"url":null,"abstract":"We investigate the astrophysical consequences of an attractive long-range interaction between dark matter and baryonic matter. Our study highlights the role of this interaction in inducing dynamical friction between dark matter and stars, which can significantly influence the evolution of compact stellar systems. Using the star cluster in Eridanus II as a case study, we derive a new stringent upper bound on the interaction strength α</a:mi></a:mrow>˜</a:mo></a:mrow></a:mover>≤</a:mo>314.5</a:mn></a:mrow></a:math> for the interaction range <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>λ</e:mi><e:mo>=</e:mo><e:mn>1</e:mn><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi>pc</e:mi></e:math>. This constraint is independent of the dark matter mass and can improve the existing model-independent limits on <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mover accent=\"true\"><g:mi>α</g:mi><g:mo stretchy=\"false\">˜</g:mo></g:mover></g:math> by a few orders of magnitude. Furthermore, we observe that the constraint is insensitive to the mass of the stellar system and the dark matter density in the stellar system as long as the system is dark matter dominated. This new approach can be applied to many other stellar systems, and we obtain comparable constraints from compact stellar halos observed in ultrafaint dwarf galaxies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"34 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l061302","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the astrophysical consequences of an attractive long-range interaction between dark matter and baryonic matter. Our study highlights the role of this interaction in inducing dynamical friction between dark matter and stars, which can significantly influence the evolution of compact stellar systems. Using the star cluster in Eridanus II as a case study, we derive a new stringent upper bound on the interaction strength α˜≤314.5 for the interaction range λ=1 pc. This constraint is independent of the dark matter mass and can improve the existing model-independent limits on α˜ by a few orders of magnitude. Furthermore, we observe that the constraint is insensitive to the mass of the stellar system and the dark matter density in the stellar system as long as the system is dark matter dominated. This new approach can be applied to many other stellar systems, and we obtain comparable constraints from compact stellar halos observed in ultrafaint dwarf galaxies. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Mass and force relations for extremal Einstein-Maxwell-dilaton-axion black holes Numerical calculation of entanglement entropy in de Sitter space Dark matter stabilized by a non-Abelian group: Lessons from the Σ(36) 3HDM Spin kinetic theory with a nonlocal relaxation time approximation Effective actions for domain wall dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1