{"title":"Non-Nernstian Effects in Theoretical Electrocatalysis","authors":"Dipam Manish Patel, Georg Kastlunger","doi":"10.1021/acs.chemrev.4c00803","DOIUrl":null,"url":null,"abstract":"Electrocatalysis is one of the principal pathways for the transition to sustainable chemistry, promising greater energy efficiency and reduced emissions. As the field has grown, our theoretical understanding has matured. The influence of the applied potential on reactivity has developed from the first-order predictions based on the Nernst equation to the implicit inclusion of second-order effects including the interaction of reacting species with the interfacial electric field. In this review, we explore these non-Nernstian field effects in electrocatalysis, aiming to both understand and exploit them through theory and computation. We summarize the critical distinction between Nernstian and non-Nernstian effects and outline strategies to address the latter in theoretical studies. Subsequently, we examine the specific energetic contributions of the latter on capacitive and faradaic processes separately. We also underscore the importance of considering non-Nernstian effects in catalyst screening and mechanistic analysis. Finally, we provide suggestions on how to experimentally unravel these effects, offering insights into practical approaches for advancing the field.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"53 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalysis is one of the principal pathways for the transition to sustainable chemistry, promising greater energy efficiency and reduced emissions. As the field has grown, our theoretical understanding has matured. The influence of the applied potential on reactivity has developed from the first-order predictions based on the Nernst equation to the implicit inclusion of second-order effects including the interaction of reacting species with the interfacial electric field. In this review, we explore these non-Nernstian field effects in electrocatalysis, aiming to both understand and exploit them through theory and computation. We summarize the critical distinction between Nernstian and non-Nernstian effects and outline strategies to address the latter in theoretical studies. Subsequently, we examine the specific energetic contributions of the latter on capacitive and faradaic processes separately. We also underscore the importance of considering non-Nernstian effects in catalyst screening and mechanistic analysis. Finally, we provide suggestions on how to experimentally unravel these effects, offering insights into practical approaches for advancing the field.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.