Disentangling chemical pressure and superexchange effects in lanthanide-organic valence tautomerism

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-03-07 DOI:10.1039/d5sc01246e
Anton Viborg, Maja A Dunstan, Nathan J. Yutronkie, Amit Chanda, Felix Trier, Nini Pryds, Fabrice Wilhelm, Andrei Rogalev, Dawid Pinkowicz, Kasper Steen Pedersen
{"title":"Disentangling chemical pressure and superexchange effects in lanthanide-organic valence tautomerism","authors":"Anton Viborg, Maja A Dunstan, Nathan J. Yutronkie, Amit Chanda, Felix Trier, Nini Pryds, Fabrice Wilhelm, Andrei Rogalev, Dawid Pinkowicz, Kasper Steen Pedersen","doi":"10.1039/d5sc01246e","DOIUrl":null,"url":null,"abstract":"Valence tautomerism in molecule-based f-block materials remains virtually elusive. As a result, the effects driving and controlling the valence conversion phenomenon are poorly understood. Herein, we unravel these fundamental factors by systematic chemical modification of a bona fide lanthanide coordination solid, SmI<small><sub>2</sub></small>(pyrazine)<small><sub>2</sub></small>(tetrahydrofuran), in which a complete, temperature-driven conversion between Sm(II) and Sm(III) occurs abruptly around 200 K. Solid solutions incorporating either divalent, diamagnetic metal ions or Sm(III) ions feature disparate behavior. Substitution with redox-inactive, divalent metal ions invariably leads to lower conversion temperatures and reduced cooperativity. In contrast, incorporation of redox-inactive Sm(III) ions leads to trapped pyrazine anion radicals in the ligand scaffold, shifting the valence tautomeric conversion phenomenon towards higher temperature with virtually no loss of cooperativity. These materials are rare examples of lanthanide-organic materials hosting mixed valency, herein in both the lanthanide and organic scaffold, affording switchable conductivity associated with the valence tautomeric conversion.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"39 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc01246e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Valence tautomerism in molecule-based f-block materials remains virtually elusive. As a result, the effects driving and controlling the valence conversion phenomenon are poorly understood. Herein, we unravel these fundamental factors by systematic chemical modification of a bona fide lanthanide coordination solid, SmI2(pyrazine)2(tetrahydrofuran), in which a complete, temperature-driven conversion between Sm(II) and Sm(III) occurs abruptly around 200 K. Solid solutions incorporating either divalent, diamagnetic metal ions or Sm(III) ions feature disparate behavior. Substitution with redox-inactive, divalent metal ions invariably leads to lower conversion temperatures and reduced cooperativity. In contrast, incorporation of redox-inactive Sm(III) ions leads to trapped pyrazine anion radicals in the ligand scaffold, shifting the valence tautomeric conversion phenomenon towards higher temperature with virtually no loss of cooperativity. These materials are rare examples of lanthanide-organic materials hosting mixed valency, herein in both the lanthanide and organic scaffold, affording switchable conductivity associated with the valence tautomeric conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Bifunctional Additive-Driven Shape Transitions of Block Copolymer Particles through Synergistic Quaternization and Protonation Unraveling the Effect of Alkali Cation on Fe Single Atom Catalysts with High Coordination Number Disentangling chemical pressure and superexchange effects in lanthanide-organic valence tautomerism Fluoride-induced redox-switchable behaviour of a palladium (II)/(IV) couple Correction: Exploiting the inherent promiscuity of the acyl transferase of the stambomycin polyketide synthase for the mutasynthesis of analogues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1