{"title":"Inconsistent influence of temperature, precipitation, and CO2 variations on the plateau alpine vegetation carbon flux","authors":"Lixin Dong, Xufeng Wang","doi":"10.1038/s41612-025-00975-4","DOIUrl":null,"url":null,"abstract":"<p>The superimposed fluctuations of temperature, precipitation, and CO<sub>2</sub> concentration are crucial for the Alpine Vegetation Carbon Flux on the Qinghai-Tibet Plateau. This study updates the Lund-Potsdam-Jena Model (LPJ) with plant functional types native to alpine regions and assimilates the daily LAI remote sensing datasets. And, the influence of climate factors and CO<sub>2</sub> concentration on Alpine Vegetation carbon fluxes was simulated. Validation against field data shows the model accurately simulates daily GPP with <i>R</i><sup>2</sup> of 0.8332 and 0.8608, RMSE of 1.96 and 1.485 for 2013–2014, respectively. For NEP, the RMSE are 1.15 and 1.19 for the same years. The research reveals the pronounced spatiotemporal variations of carbon fluxes were highly responsive to temperature changes. Precipitation shows a more consistent interannual variation relationship with carbon fluxes than temperature does. Notably, NPP/GPP increase only with concurrent rises in CO<sub>2</sub> and precipitation, highlighting the superimposed implications of climate-induced carbon flux changes in Alpine vegetation.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"77 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00975-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The superimposed fluctuations of temperature, precipitation, and CO2 concentration are crucial for the Alpine Vegetation Carbon Flux on the Qinghai-Tibet Plateau. This study updates the Lund-Potsdam-Jena Model (LPJ) with plant functional types native to alpine regions and assimilates the daily LAI remote sensing datasets. And, the influence of climate factors and CO2 concentration on Alpine Vegetation carbon fluxes was simulated. Validation against field data shows the model accurately simulates daily GPP with R2 of 0.8332 and 0.8608, RMSE of 1.96 and 1.485 for 2013–2014, respectively. For NEP, the RMSE are 1.15 and 1.19 for the same years. The research reveals the pronounced spatiotemporal variations of carbon fluxes were highly responsive to temperature changes. Precipitation shows a more consistent interannual variation relationship with carbon fluxes than temperature does. Notably, NPP/GPP increase only with concurrent rises in CO2 and precipitation, highlighting the superimposed implications of climate-induced carbon flux changes in Alpine vegetation.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.