{"title":"Pressure-induced nano-crystallization and high hardness of optically transparent α-Si3N4 ceramics","authors":"Shuailing Ma, Wei Li, Xiaoqi Zhang, Kathy Lu, Min Lian, Xinmiao Wei, Yilong Pan, Hai Jiang, Hongwei Wang, Zihan Zhang, Qiang Tao, Tian Cui, Ralf Riedel, Pinwen Zhu","doi":"10.1007/s11433-024-2613-4","DOIUrl":null,"url":null,"abstract":"<div><p>Transparent silicon nitride ceramics with good optical and mechanical properties are promising ceramics for scientific and industrial window materials with a long service life. The optical transparency and mechanical strength will be substantially enhanced in dense nano-polycrystalline monoliths. However, the synthesis of nano-polycrystalline α-Si<sub>3</sub>N<sub>4</sub> has not been realized due to the limitations of conventional sintering techniques. Here, nano-polycrystalline α-Si<sub>3</sub>N<sub>4</sub> was prepared by direct conversion of micron-grain silicon nitride without additives under high-pressure conditions of 5 GPa and a limited temperature range 1650°C–1700°C. The micron-sized grains undergo grain refinement and recrystallization to form uniform nano-grains under high pressure and high temperature. Furthermore, transparent α-Si<sub>3</sub>N<sub>4</sub> samples exhibit the highest Vickers hardness of 26.7 GPa, which is far higher than that of specimens with or without additives used in other sintering methods (e.g., SPS, and HP). According to the Hall-Petch and Taylor dislocation hardening effects, the refined nano-grains, coherent grain boundaries, and high dislocation density lead to high hardness. Moreover, the high density, nanoscale grains, and fine grain boundaries are ascribed to the improvement of transparency. Ultrahigh-pressure sintering induces grain refinement, grain coherency, and increased dislocation in silicon nitrides, thus providing a promising method for preparing advanced transparent ceramic windows in the future.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2613-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent silicon nitride ceramics with good optical and mechanical properties are promising ceramics for scientific and industrial window materials with a long service life. The optical transparency and mechanical strength will be substantially enhanced in dense nano-polycrystalline monoliths. However, the synthesis of nano-polycrystalline α-Si3N4 has not been realized due to the limitations of conventional sintering techniques. Here, nano-polycrystalline α-Si3N4 was prepared by direct conversion of micron-grain silicon nitride without additives under high-pressure conditions of 5 GPa and a limited temperature range 1650°C–1700°C. The micron-sized grains undergo grain refinement and recrystallization to form uniform nano-grains under high pressure and high temperature. Furthermore, transparent α-Si3N4 samples exhibit the highest Vickers hardness of 26.7 GPa, which is far higher than that of specimens with or without additives used in other sintering methods (e.g., SPS, and HP). According to the Hall-Petch and Taylor dislocation hardening effects, the refined nano-grains, coherent grain boundaries, and high dislocation density lead to high hardness. Moreover, the high density, nanoscale grains, and fine grain boundaries are ascribed to the improvement of transparency. Ultrahigh-pressure sintering induces grain refinement, grain coherency, and increased dislocation in silicon nitrides, thus providing a promising method for preparing advanced transparent ceramic windows in the future.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.