{"title":"Kinetic Investigation of CuSx Formation on Cu Substrates for Enhanced Electrochemical CO2 Reduction to HCOOH","authors":"Jin Wook Lim, Won Seok Cho, Jong-Lam Lee","doi":"10.1007/s13391-025-00546-y","DOIUrl":null,"url":null,"abstract":"<div><p>Copper sulfide (CuS<sub>x</sub>) is an electrocatalyst which selectively converts CO<sub>2</sub> into HCOOH under harsh conditions. Here, we investigate the formation and kinetics of CuS<sub>x</sub> nanostructures on various multi-metal substrates to understand their catalytic properties in sulfur-containing environments. Using a combination of morphological, structural, and electrochemical analyses, we elucidate the time-dependent growth behavior of CuS<sub>x</sub> nanostructures with progressive void formation over time. Notably, we discover that CuS<sub>x</sub> formation is accelerated on substrates with galvanic corrosion-promoting metals such as Ag and Au, leading to enhanced selectivity for HCOOH during CO<sub>2</sub> reduction. In contrast, coating Cu with corrosion-inhibiting metals like Sn, Ni, or In reduce HCOOH selectivity, highlighting the critical role of galvanic corrosion in the CuS<sub>x</sub> formation mechanism and its kinetics. This study experimentally identifies the impact of galvanic corrosion on CuS<sub>x</sub> formation mechanisms and offers insights for optimizing electrocatalytic systems.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"245 - 251"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-025-00546-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper sulfide (CuSx) is an electrocatalyst which selectively converts CO2 into HCOOH under harsh conditions. Here, we investigate the formation and kinetics of CuSx nanostructures on various multi-metal substrates to understand their catalytic properties in sulfur-containing environments. Using a combination of morphological, structural, and electrochemical analyses, we elucidate the time-dependent growth behavior of CuSx nanostructures with progressive void formation over time. Notably, we discover that CuSx formation is accelerated on substrates with galvanic corrosion-promoting metals such as Ag and Au, leading to enhanced selectivity for HCOOH during CO2 reduction. In contrast, coating Cu with corrosion-inhibiting metals like Sn, Ni, or In reduce HCOOH selectivity, highlighting the critical role of galvanic corrosion in the CuSx formation mechanism and its kinetics. This study experimentally identifies the impact of galvanic corrosion on CuSx formation mechanisms and offers insights for optimizing electrocatalytic systems.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.