Wonbin Kim, Sungjae Choi, Seongi Lee, Young-Chang Joo, Byoung-Joon Kim
{"title":"Dielectric Bonding Method for 3D Integration Packaging Using Self-Assembled Monolayer","authors":"Wonbin Kim, Sungjae Choi, Seongi Lee, Young-Chang Joo, Byoung-Joon Kim","doi":"10.1007/s13391-025-00547-x","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of big data and artificial intelligence has promoted the semiconductor industry to increasingly adopt advanced three-dimensional stacking packaging technologies due to the limitations of device scaling. Traditional packaging methods, which rely on micro bumps and adhesives, struggle to meet the growing demands for sub-micrometer fine pitches. To address these challenges, bump-less direct bonding techniques, such as Cu/SiO₂ hybrid bonding, have gained attention, along with surface-activated bonding (SAB) using plasma treatment. However, plasma treatment poses risks, including Cu oxidation and potential short circuits from Cu particle transfer in fine-pitch applications. This study presents a novel plasma-free method that utilizes self-assembled monolayers (SAMs), thin molecular layers that spontaneously create ordered structures on surfaces, for dielectric surface activation. We deposited 3-aminopropyltriethoxysilane (APTES) on silicon dioxide (SiO₂), resulting in a hydrophilic layer that enhances bonding. Notably, a heat treatment significantly improved interfacial adhesion strength through the formation of an amorphous silicon (Si) layer. This SAM-based bonding technique, which enables dielectric surface without the need for plasma, holds promise for future fine-pitch hybrid bonding applications in 3D integrated packaging.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"184 - 192"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-025-00547-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of big data and artificial intelligence has promoted the semiconductor industry to increasingly adopt advanced three-dimensional stacking packaging technologies due to the limitations of device scaling. Traditional packaging methods, which rely on micro bumps and adhesives, struggle to meet the growing demands for sub-micrometer fine pitches. To address these challenges, bump-less direct bonding techniques, such as Cu/SiO₂ hybrid bonding, have gained attention, along with surface-activated bonding (SAB) using plasma treatment. However, plasma treatment poses risks, including Cu oxidation and potential short circuits from Cu particle transfer in fine-pitch applications. This study presents a novel plasma-free method that utilizes self-assembled monolayers (SAMs), thin molecular layers that spontaneously create ordered structures on surfaces, for dielectric surface activation. We deposited 3-aminopropyltriethoxysilane (APTES) on silicon dioxide (SiO₂), resulting in a hydrophilic layer that enhances bonding. Notably, a heat treatment significantly improved interfacial adhesion strength through the formation of an amorphous silicon (Si) layer. This SAM-based bonding technique, which enables dielectric surface without the need for plasma, holds promise for future fine-pitch hybrid bonding applications in 3D integrated packaging.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.