Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2025-03-07 DOI:10.1002/jbm.a.37874
Hamed Hosseinian, Aida Rodriguez-Garcia, Samira Hosseini
{"title":"Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses","authors":"Hamed Hosseinian,&nbsp;Aida Rodriguez-Garcia,&nbsp;Samira Hosseini","doi":"10.1002/jbm.a.37874","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Maintaining precise control over fiber alignment during the electrospinning process is a significant challenge in material science. Various techniques have been explored to enhance fiber alignment, including the use of rotating collectors, patterned electrodes, and magnetic fields. However, these methods are typically complex, expensive, and involve multiple procedural steps, which can hinder their practical application in industrial settings. In this work, polycaprolactone (PCL) was used to electrospun scaffolds characterized by meshed, aligned, and grid fiber structures. A cost-effective approach for fabricating grid fibers, offering enhanced control over the scaffold, and potentially beneficial for medical applications was developed in this study. Using previously fabricated aligned fibers served as a foundation for developing ocular contact lenses incorporating the newly designed grid and meshed fibers. A comparative proof-of-concept study was conducted, utilizing three distinct fiber orientations to evaluate the efficacy and potential use in ocular drug delivery of each fiber type within the scaffolds. The morphology, light transmittance, mechanical properties, and wettability of the contact lenses were systematically assessed. The PCL-based ocular contact lenses, specifically tailored to conform to the anatomical shape of the eye, demonstrated a significant extension in Rhodamine B residence time, achieving an increase of up to two hours compared to conventional eye drops on the porcine cornea. Among the fiber types analyzed, grid fibers emerged as the most promising, followed by aligned fibers, both exhibiting superior Rhodamine B retention compared to meshed fibers. In conclusion, the innovative advancements in fiber alignment techniques and the use of PCL in the fabrication of ocular contact lenses underscore the potential for enhanced medical applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37874","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining precise control over fiber alignment during the electrospinning process is a significant challenge in material science. Various techniques have been explored to enhance fiber alignment, including the use of rotating collectors, patterned electrodes, and magnetic fields. However, these methods are typically complex, expensive, and involve multiple procedural steps, which can hinder their practical application in industrial settings. In this work, polycaprolactone (PCL) was used to electrospun scaffolds characterized by meshed, aligned, and grid fiber structures. A cost-effective approach for fabricating grid fibers, offering enhanced control over the scaffold, and potentially beneficial for medical applications was developed in this study. Using previously fabricated aligned fibers served as a foundation for developing ocular contact lenses incorporating the newly designed grid and meshed fibers. A comparative proof-of-concept study was conducted, utilizing three distinct fiber orientations to evaluate the efficacy and potential use in ocular drug delivery of each fiber type within the scaffolds. The morphology, light transmittance, mechanical properties, and wettability of the contact lenses were systematically assessed. The PCL-based ocular contact lenses, specifically tailored to conform to the anatomical shape of the eye, demonstrated a significant extension in Rhodamine B residence time, achieving an increase of up to two hours compared to conventional eye drops on the porcine cornea. Among the fiber types analyzed, grid fibers emerged as the most promising, followed by aligned fibers, both exhibiting superior Rhodamine B retention compared to meshed fibers. In conclusion, the innovative advancements in fiber alignment techniques and the use of PCL in the fabrication of ocular contact lenses underscore the potential for enhanced medical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Keratin Rich PCL Blended Nano-Microfibrous Sheet as a Bioactive Immunomodulatory ECM Analog Toward Dermal Wound Healing—In Vitro and In Vivo Responses Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses Measurement and Comparison of Hyaluronic Acid Hydrogel Mechanics Across Length Scales Optimizing Tissue-Engineered Periosteum Biochemical Cues to Hasten Bone Allograft Healing Layer-By-Layer Functionalized Gauze With Designed α-Sheet Peptides Inhibits E. coli and S. aureus Biofilm Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1