Establishment of a novel mouse model of colorectal cancer by orthotopic transplantation.

IF 3.4 2区 医学 Q2 ONCOLOGY BMC Cancer Pub Date : 2025-03-06 DOI:10.1186/s12885-025-13834-5
Cewen Chen, Qiaochu Fu, Lei Wang, Shinya Tanaka, Masamichi Imajo
{"title":"Establishment of a novel mouse model of colorectal cancer by orthotopic transplantation.","authors":"Cewen Chen, Qiaochu Fu, Lei Wang, Shinya Tanaka, Masamichi Imajo","doi":"10.1186/s12885-025-13834-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) represents a major malignancy that poses a significant threat to human health worldwide. The establishment of a reliable and pathologically relevant orthotopic model of CRC is crucial for gaining a deeper understanding of its molecular mechanisms and for developing more effective therapies. Nonetheless, the development of such models is fraught with challenges primarily owing to the technical complexities associated with the transplantation of CRC cells into the intestinal epithelium.</p><p><strong>Methods: </strong>The luminal surface of the cecum was externalized to visualize the entire process involved in the transplantation of CRC cells into the cecal epithelium of BALB/c athymic nude mice. The cecal epithelium was mechanically removed, preserving the integrity of the submucosal layer. Caco-2 CRC cells were subsequently inoculated onto the epithelium-depleted surface of the cecum to reproduce the development of CRC within the epithelial layer. The successful removal of the epithelium and transplantation of Caco-2 cells were verified through the use of appropriate fluorescent labeling techniques and examination with a fluorescence stereoscopic microscope.</p><p><strong>Results: </strong>Following orthotopic transplantation, Caco-2 cells formed tumors in the cecum, where tumors progressed from a flat monolayer epithelium to thickened aberrant crypt foci, and then to protruding polyps, aided by mesenchymal cells infiltrating the tumors to form a stalk region, and eventually to large tumors invading the submucosa. Throughout this process, Caco-2 cells retained stem cell and fetal intestinal signatures, regardless of their location within the tumors or their proliferative status. Histopathological analysis further suggested that interactions between the transplanted Caco-2 cells and the surrounding normal epithelial and mesenchymal cells play critical roles in tumor development and in the elimination of normal epithelial cells from the tumor in this model.</p><p><strong>Conclusions: </strong>This study established a novel orthotopic model of CRC within the mouse cecum. Tumor development and progression in this model include sequential morphological changes from a flat monolayer to large invasive tumors. The establishment of this orthotopic CRC model, which mimics tumor development in a more natural microenvironment, provides new opportunities to investigate the molecular mechanisms underlying CRC and to evaluate novel anticancer therapies in pathologically relevant contexts.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"405"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13834-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) represents a major malignancy that poses a significant threat to human health worldwide. The establishment of a reliable and pathologically relevant orthotopic model of CRC is crucial for gaining a deeper understanding of its molecular mechanisms and for developing more effective therapies. Nonetheless, the development of such models is fraught with challenges primarily owing to the technical complexities associated with the transplantation of CRC cells into the intestinal epithelium.

Methods: The luminal surface of the cecum was externalized to visualize the entire process involved in the transplantation of CRC cells into the cecal epithelium of BALB/c athymic nude mice. The cecal epithelium was mechanically removed, preserving the integrity of the submucosal layer. Caco-2 CRC cells were subsequently inoculated onto the epithelium-depleted surface of the cecum to reproduce the development of CRC within the epithelial layer. The successful removal of the epithelium and transplantation of Caco-2 cells were verified through the use of appropriate fluorescent labeling techniques and examination with a fluorescence stereoscopic microscope.

Results: Following orthotopic transplantation, Caco-2 cells formed tumors in the cecum, where tumors progressed from a flat monolayer epithelium to thickened aberrant crypt foci, and then to protruding polyps, aided by mesenchymal cells infiltrating the tumors to form a stalk region, and eventually to large tumors invading the submucosa. Throughout this process, Caco-2 cells retained stem cell and fetal intestinal signatures, regardless of their location within the tumors or their proliferative status. Histopathological analysis further suggested that interactions between the transplanted Caco-2 cells and the surrounding normal epithelial and mesenchymal cells play critical roles in tumor development and in the elimination of normal epithelial cells from the tumor in this model.

Conclusions: This study established a novel orthotopic model of CRC within the mouse cecum. Tumor development and progression in this model include sequential morphological changes from a flat monolayer to large invasive tumors. The establishment of this orthotopic CRC model, which mimics tumor development in a more natural microenvironment, provides new opportunities to investigate the molecular mechanisms underlying CRC and to evaluate novel anticancer therapies in pathologically relevant contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
期刊最新文献
Preoperative heart rate variability as a predictor of postoperative pneumonia and lung function recovery in surgical lung cancer patients: a prospective observed study. CYP2D6 polymorphisms and endoxifen concentration in Chinese patients with breast cancer. Establishment of a novel mouse model of colorectal cancer by orthotopic transplantation. Impact of celastrol on mitochondrial dynamics and proliferation in glioblastoma. Location based BRAF V600E mutation status and dimension patterns of sporadic thyroid nodules: a population-based study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1