Theoretical analysis of low-power deep synergistic sono-optogenetic excitation of neurons by co-expressing light-sensitive and mechano-sensitive ion-channels.
{"title":"Theoretical analysis of low-power deep synergistic sono-optogenetic excitation of neurons by co-expressing light-sensitive and mechano-sensitive ion-channels.","authors":"Sukhdev Roy, Gur Pyari, Himanshu Bansal","doi":"10.1038/s42003-025-07792-8","DOIUrl":null,"url":null,"abstract":"<p><p>The present challenge in neuroscience is to non-invasively exercise low-power and high-fidelity control of neurons situated deep inside the brain. Although, two-photon optogenetic excitation can activate neurons to millimeter depth with sub-cellular specificity and millisecond temporal resolution, it can also cause heating of the targeted tissue. On the other hand, sonogenetics can non-invasively modulate the cellular activity of neurons expressed with mechano-sensitive proteins in deeper areas of the brain with less spatial selectivity. We present a theoretical analysis of a synergistic sono-optogenetic method to overcome these limitations by co-expressing a mechano-sensitive (MscL-I92L) ion-channel with a light-sensitive (CoChR/ChroME2s/ChRmine) ion-channel in hippocampal neurons. It is shown that in the presence of low-amplitude subthreshold ultrasound pulses, the two-photon excitation threshold for neural spiking reduces drastically by 73% with MscL-I92L-CoChR (0.021 mW/µm<sup>2</sup>), 66% with MscL-I92L-ChroME2s (0.029 mW/µm<sup>2</sup>), and 64% with MscL-I92L-ChRmine (0.013 mW/µm<sup>2</sup>) at 5 Hz. It allows deeper excitation of up to 1.2 cm with MscL-I92L-ChRmine combination. The method is useful to design new experiments for low-power deep excitation of neurons and multimodal neuroprosthetic devices and circuits.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"379"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07792-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present challenge in neuroscience is to non-invasively exercise low-power and high-fidelity control of neurons situated deep inside the brain. Although, two-photon optogenetic excitation can activate neurons to millimeter depth with sub-cellular specificity and millisecond temporal resolution, it can also cause heating of the targeted tissue. On the other hand, sonogenetics can non-invasively modulate the cellular activity of neurons expressed with mechano-sensitive proteins in deeper areas of the brain with less spatial selectivity. We present a theoretical analysis of a synergistic sono-optogenetic method to overcome these limitations by co-expressing a mechano-sensitive (MscL-I92L) ion-channel with a light-sensitive (CoChR/ChroME2s/ChRmine) ion-channel in hippocampal neurons. It is shown that in the presence of low-amplitude subthreshold ultrasound pulses, the two-photon excitation threshold for neural spiking reduces drastically by 73% with MscL-I92L-CoChR (0.021 mW/µm2), 66% with MscL-I92L-ChroME2s (0.029 mW/µm2), and 64% with MscL-I92L-ChRmine (0.013 mW/µm2) at 5 Hz. It allows deeper excitation of up to 1.2 cm with MscL-I92L-ChRmine combination. The method is useful to design new experiments for low-power deep excitation of neurons and multimodal neuroprosthetic devices and circuits.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.