Light cues drive community-wide transcriptional shifts in the hypersaline South Bay Salt Works.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-03-17 DOI:10.1038/s42003-025-07855-w
Margaret M Weng, Benjamin Klempay, Jeff S Bowman, Luke Fisher, Cyprien Camplong, Peter T Doran, Susan Rundell, Jennifer B Glass, Avishek Dutta, Alexandra Pontefract, Douglas H Bartlett, Britney Schmidt, Sarah Stewart Johnson
{"title":"Light cues drive community-wide transcriptional shifts in the hypersaline South Bay Salt Works.","authors":"Margaret M Weng, Benjamin Klempay, Jeff S Bowman, Luke Fisher, Cyprien Camplong, Peter T Doran, Susan Rundell, Jennifer B Glass, Avishek Dutta, Alexandra Pontefract, Douglas H Bartlett, Britney Schmidt, Sarah Stewart Johnson","doi":"10.1038/s42003-025-07855-w","DOIUrl":null,"url":null,"abstract":"<p><p>The transition from day to night brings sweeping change to both environments and the organisms within them. Diel shifts in gene expression have been documented across all domains of life but remain understudied in microbial communities, particularly those in extreme environments where small changes may have rippling effects on resource availability. In hypersaline environments, many prominent taxa are photoheterotrophs that rely on organic carbon for growth but can also generate significant ATP via light-powered rhodopsins. Previous research demonstrated a significant response to light intensity shifts in the model halophile Halobacterium salinarum, but these cycles have rarely been explored in situ. Here, we examined genome-resolved differential expression in a hypersaline saltern (water activity (a<sub>w</sub>) <math><mo>≅</mo></math> 0.83, total dissolved solids = 250.7 g L<sup>-1</sup>) throughout a 24-h period. We found increased transcription of genes related to phototrophy and anabolic metabolic processes during the day, while genes related to aerobic respiration and oxidative stress were upregulated at night. Substantiating these results with a chemostat culture of the environmentally abundant halophilic bacterium Salinibacter ruber revealed similar transcriptional upregulation of genes associated with aerobic respiration under dark conditions. These results describe the potential for light-driven changes in oxygen use across both a natural hypersaline environment and a pure culture.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"450"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07855-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transition from day to night brings sweeping change to both environments and the organisms within them. Diel shifts in gene expression have been documented across all domains of life but remain understudied in microbial communities, particularly those in extreme environments where small changes may have rippling effects on resource availability. In hypersaline environments, many prominent taxa are photoheterotrophs that rely on organic carbon for growth but can also generate significant ATP via light-powered rhodopsins. Previous research demonstrated a significant response to light intensity shifts in the model halophile Halobacterium salinarum, but these cycles have rarely been explored in situ. Here, we examined genome-resolved differential expression in a hypersaline saltern (water activity (aw) 0.83, total dissolved solids = 250.7 g L-1) throughout a 24-h period. We found increased transcription of genes related to phototrophy and anabolic metabolic processes during the day, while genes related to aerobic respiration and oxidative stress were upregulated at night. Substantiating these results with a chemostat culture of the environmentally abundant halophilic bacterium Salinibacter ruber revealed similar transcriptional upregulation of genes associated with aerobic respiration under dark conditions. These results describe the potential for light-driven changes in oxygen use across both a natural hypersaline environment and a pure culture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
SunTag-PE: a modular prime editing system enables versatile and efficient genome editing. Cd248a regulates pericyte development and viability in zebrafish. Fundamental questions in meiofauna research highlight how small but ubiquitous animals can improve our understanding of Nature. Light cues drive community-wide transcriptional shifts in the hypersaline South Bay Salt Works. Smooth muscle cell Piezo1 depletion results in impaired contractile properties in murine small bowel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1