Molecular characterization of the heterogeneity of satellite cell populations isolated from an individual Turkey pectoralis major muscle.

IF 3.2 3区 医学 Q2 PHYSIOLOGY Frontiers in Physiology Pub Date : 2025-02-20 eCollection Date: 2025-01-01 DOI:10.3389/fphys.2025.1547188
Hui Yu, Zhenyang Li, Joseph Yimiletey, Chunmei Wan, Sandra Velleman
{"title":"Molecular characterization of the heterogeneity of satellite cell populations isolated from an individual Turkey pectoralis major muscle.","authors":"Hui Yu, Zhenyang Li, Joseph Yimiletey, Chunmei Wan, Sandra Velleman","doi":"10.3389/fphys.2025.1547188","DOIUrl":null,"url":null,"abstract":"<p><p>Satellite cells (SCs) are myogenic stem cells responsible for post hatch muscle growth and the regeneration of muscle fibers. Satellite cells are not a homogenous population of cells within a muscle and have variable rates of proliferation and differentiation even within a single fiber type muscle like the turkey pectoralis major muscle. In this study, the single satellite cell clones derived from the same turkey pectoralis major muscle with different proliferation rates were compared. The clones were classified as either fast-growing (early clone) or slow-growing (late clone) SCs. To thoroughly examine the molecular differences between these two groups, RNA sequencing was conducted to compare their transcriptomes following 72 h of proliferation. Principal Component Analysis confirmed that the transcriptomic profiles of early- and late-clones are markedly distinct. Differential gene expression analysis identified over 5,300 genes that were significantly differentially expressed between the two groups of cells. Gene ontology analysis showed that genes highly expressed in early clones are responsible for the fundamental aspects of muscle biology, including muscle tissue development and structural maturation. Conversely, genes upregulated in late clones are involved in cell-cell communication, extracellular matrix interactions, signal ligand activity, and cytokine activity-key components for forming an extracellular niche essential for functional satellite cells maintenance. Further examination of specific gene ontology categories such as muscle structure development and extracellular matrix components indicated significant differences in gene expression patterns between early- and late-clones. These findings highlight the genetic and functional diversity of SCs in turkeys. The distinct roles of these satellite cell populations indicate that a balance between them is necessary for preserving the normal physiological functions of SCs.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1547188"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1547188","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite cells (SCs) are myogenic stem cells responsible for post hatch muscle growth and the regeneration of muscle fibers. Satellite cells are not a homogenous population of cells within a muscle and have variable rates of proliferation and differentiation even within a single fiber type muscle like the turkey pectoralis major muscle. In this study, the single satellite cell clones derived from the same turkey pectoralis major muscle with different proliferation rates were compared. The clones were classified as either fast-growing (early clone) or slow-growing (late clone) SCs. To thoroughly examine the molecular differences between these two groups, RNA sequencing was conducted to compare their transcriptomes following 72 h of proliferation. Principal Component Analysis confirmed that the transcriptomic profiles of early- and late-clones are markedly distinct. Differential gene expression analysis identified over 5,300 genes that were significantly differentially expressed between the two groups of cells. Gene ontology analysis showed that genes highly expressed in early clones are responsible for the fundamental aspects of muscle biology, including muscle tissue development and structural maturation. Conversely, genes upregulated in late clones are involved in cell-cell communication, extracellular matrix interactions, signal ligand activity, and cytokine activity-key components for forming an extracellular niche essential for functional satellite cells maintenance. Further examination of specific gene ontology categories such as muscle structure development and extracellular matrix components indicated significant differences in gene expression patterns between early- and late-clones. These findings highlight the genetic and functional diversity of SCs in turkeys. The distinct roles of these satellite cell populations indicate that a balance between them is necessary for preserving the normal physiological functions of SCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Duration-dependent physiological, perceptual, and technical changes during a 2-hour low-intensity training session in female cross-country skiers. Molecular characterization of the heterogeneity of satellite cell populations isolated from an individual Turkey pectoralis major muscle. "Distribution of dominant wavelengths predicts jackdaw (Corvus monedula) color discrimination performance". Comparisons of urinary bladder responses to common antimuscarinics reveals unique effects of darifenacin. Association between the lactate-to-albumin ratio (LAR) index and risk of acute kidney injury in critically ill patients with sepsis: analysis of the MIMIC-IV database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1