{"title":"Alterations in bile acid metabolites associated with pathogenicity and IVIG resistance in Kawasaki disease.","authors":"Xinqi Wang, Linli Han, Jiyang Jiang, Zhenxin Fan, Yimin Hua, Libang He, Yifei Li","doi":"10.3389/fcvm.2025.1549900","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kawasaki disease (KD) primarily affects children as an acute systemic vasculitis. Numerous studies indicated an elevated risk of cardiovascular disease due to metabolic disturbances. Despite this knowledge, the specific metabolic modes involved in KD remain unclear.</p><p><strong>Methods: </strong>We examined the metabolome of individuals with 108 KD and 52 non-KD controls (KD vs. nKD) by ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS).</p><p><strong>Results: </strong>Differential analysis uncovered the disturbed production of bile acids and lipids in KD. Furthermore, we investigated the impact of treatment, intravenous immunoglobulin (IVIG) resistance, and coronary artery (CA) occurrence on the metabolome. Our findings suggested that IVIG treatment alters the lipid and amino acid metabolism of KD patients. By orthogonal projections to latent structures discriminant analysis (OPLS-DA), there was no significant difference between the coronary injury groups and non-coronary injury groups, and IVIG resistance didn't appear to cause the metabolic change in KD patients.</p><p><strong>Conclusions: </strong>Patients with KD exhibit metabolic abnormalities, particularly in bile acids and lipids. IVIG interventions may partially ameliorate these lipid abnormalities.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"12 ","pages":"1549900"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2025.1549900","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Kawasaki disease (KD) primarily affects children as an acute systemic vasculitis. Numerous studies indicated an elevated risk of cardiovascular disease due to metabolic disturbances. Despite this knowledge, the specific metabolic modes involved in KD remain unclear.
Methods: We examined the metabolome of individuals with 108 KD and 52 non-KD controls (KD vs. nKD) by ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS).
Results: Differential analysis uncovered the disturbed production of bile acids and lipids in KD. Furthermore, we investigated the impact of treatment, intravenous immunoglobulin (IVIG) resistance, and coronary artery (CA) occurrence on the metabolome. Our findings suggested that IVIG treatment alters the lipid and amino acid metabolism of KD patients. By orthogonal projections to latent structures discriminant analysis (OPLS-DA), there was no significant difference between the coronary injury groups and non-coronary injury groups, and IVIG resistance didn't appear to cause the metabolic change in KD patients.
Conclusions: Patients with KD exhibit metabolic abnormalities, particularly in bile acids and lipids. IVIG interventions may partially ameliorate these lipid abnormalities.
期刊介绍:
Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers?
At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.