Claudia Ismania Samogy Costa, Luciana Madanelo, Jaqueline Yu Ting Wang, Gabriele da Silva Campos, Ana Cristina De Sanctis Girardi, Marília Scliar, Frederico Monfardini, Rita de Cássia Mingroni Pavanello, Vivian Romanholi Cória, Maria Dulcetti Vibranovski, Ana Cristina Krepischi, Naila Cristina Vilaça Lourenço, Mayana Zatz, Guilherme Lopes Yamamoto, Elaine Cristina Zachi, Maria Rita Passos-Bueno
{"title":"Understanding rare variant contributions to autism: lessons from dystrophin-deficient model.","authors":"Claudia Ismania Samogy Costa, Luciana Madanelo, Jaqueline Yu Ting Wang, Gabriele da Silva Campos, Ana Cristina De Sanctis Girardi, Marília Scliar, Frederico Monfardini, Rita de Cássia Mingroni Pavanello, Vivian Romanholi Cória, Maria Dulcetti Vibranovski, Ana Cristina Krepischi, Naila Cristina Vilaça Lourenço, Mayana Zatz, Guilherme Lopes Yamamoto, Elaine Cristina Zachi, Maria Rita Passos-Bueno","doi":"10.1038/s41525-025-00469-5","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne and Becker Muscular Dystrophy are dystrophinopathies with a prevalence of 1:5000-6000 males, caused by pathogenic variants in DMD. These conditions are often accompanied by neurodevelopmental disorders (NDDs) like autism (ASD; ~20%) and intellectual disability (ID; ~30%). However, their low penetrance in dystrophinopathies suggests additional contributing factors. In our study, 83 individuals with dystrophinopathies were clinically evaluated and categorized based on ASD (36 individuals), ID risk (12 individuals), or controls (35 individuals). Exome sequencing analysis revealed an enrichment of risk de novo variants (DNVs) in ASD-DMD individuals (adjusted p value = 0.0356), with the number of DNVs correlating with paternal age (p value = 0.0133). Additionally, DMD-ASD individuals showed a higher average of rare risk variants (RRVs) compared to DMD-Controls (adjusted p value = 0.0285). Gene ontology analysis revealed an enrichment of extracellular matrix-related genes, especially collagens, and Ehlers-Danlos syndrome genes in ASD-DMD and DMD-ID groups. These findings support an oligogenic model for ASD in dystrophinopathies, highlighting the importance of investigating homogenized samples to elucidate ASD's genetic architecture.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"18"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00469-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne and Becker Muscular Dystrophy are dystrophinopathies with a prevalence of 1:5000-6000 males, caused by pathogenic variants in DMD. These conditions are often accompanied by neurodevelopmental disorders (NDDs) like autism (ASD; ~20%) and intellectual disability (ID; ~30%). However, their low penetrance in dystrophinopathies suggests additional contributing factors. In our study, 83 individuals with dystrophinopathies were clinically evaluated and categorized based on ASD (36 individuals), ID risk (12 individuals), or controls (35 individuals). Exome sequencing analysis revealed an enrichment of risk de novo variants (DNVs) in ASD-DMD individuals (adjusted p value = 0.0356), with the number of DNVs correlating with paternal age (p value = 0.0133). Additionally, DMD-ASD individuals showed a higher average of rare risk variants (RRVs) compared to DMD-Controls (adjusted p value = 0.0285). Gene ontology analysis revealed an enrichment of extracellular matrix-related genes, especially collagens, and Ehlers-Danlos syndrome genes in ASD-DMD and DMD-ID groups. These findings support an oligogenic model for ASD in dystrophinopathies, highlighting the importance of investigating homogenized samples to elucidate ASD's genetic architecture.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.