{"title":"Limitations of neutralizing antibody titers in COVID-19 vaccine efficacy trials and a call for additional correlates of protection.","authors":"Young Hoon Hwang, Dal-Hee Min, Wan Beom Park","doi":"10.1080/21645515.2025.2473795","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease (COVID-19) pandemic accelerated development of various vaccine platforms. Among them, mRNA vaccines played a crucial role in controlling the pandemic due to their swift development and efficacy against virus variants. Despite the success of these vaccines, recent studies highlight challenges in evaluating vaccine efficacy, especially in individuals with prior COVID-19 infection. Weakened neutralizing antibody responses after additional doses are observed in these populations, raising concerns about using neutralizing antibody titers as the sole immune correlate of protection. While neutralizing antibodies remain the primary endpoint in immunogenicity trials, they may not fully capture the immune response in populations with widespread prior infection or vaccination. This review explores reduced neutralizing antibody responses in previously infected individuals, and their impact on vaccine efficacy evaluation. It also offers recommendations for improving efficacy assessment, stressing incorporation of additional immune markers such as cell-mediated immunity to enable more comprehensive understanding of vaccine-induced immunity.</p>","PeriodicalId":49067,"journal":{"name":"Human Vaccines & Immunotherapeutics","volume":"21 1","pages":"2473795"},"PeriodicalIF":4.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Vaccines & Immunotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21645515.2025.2473795","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus disease (COVID-19) pandemic accelerated development of various vaccine platforms. Among them, mRNA vaccines played a crucial role in controlling the pandemic due to their swift development and efficacy against virus variants. Despite the success of these vaccines, recent studies highlight challenges in evaluating vaccine efficacy, especially in individuals with prior COVID-19 infection. Weakened neutralizing antibody responses after additional doses are observed in these populations, raising concerns about using neutralizing antibody titers as the sole immune correlate of protection. While neutralizing antibodies remain the primary endpoint in immunogenicity trials, they may not fully capture the immune response in populations with widespread prior infection or vaccination. This review explores reduced neutralizing antibody responses in previously infected individuals, and their impact on vaccine efficacy evaluation. It also offers recommendations for improving efficacy assessment, stressing incorporation of additional immune markers such as cell-mediated immunity to enable more comprehensive understanding of vaccine-induced immunity.
期刊介绍:
(formerly Human Vaccines; issn 1554-8619)
Vaccine research and development is extending its reach beyond the prevention of bacterial or viral diseases. There are experimental vaccines for immunotherapeutic purposes and for applications outside of infectious diseases, in diverse fields such as cancer, autoimmunity, allergy, Alzheimer’s and addiction. Many of these vaccines and immunotherapeutics should become available in the next two decades, with consequent benefit for human health. Continued advancement in this field will benefit from a forum that can (A) help to promote interest by keeping investigators updated, and (B) enable an exchange of ideas regarding the latest progress in the many topics pertaining to vaccines and immunotherapeutics.
Human Vaccines & Immunotherapeutics provides such a forum. It is published monthly in a format that is accessible to a wide international audience in the academic, industrial and public sectors.