Silymarin plus Doxorubicin exerts the anti-hepatocellular carcinoma effects via Wnt, apoptosis, autophagy and angiogenesis pathways.

IF 2.3 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Molecular and Cellular Probes Pub Date : 2025-03-04 DOI:10.1016/j.mcp.2025.102022
Baohong Yuan, Ruotian Wang, Zehai Gao, Hamid Mirzeei, An-Dong Xiang, Feng Guo
{"title":"Silymarin plus Doxorubicin exerts the anti-hepatocellular carcinoma effects via Wnt, apoptosis, autophagy and angiogenesis pathways.","authors":"Baohong Yuan, Ruotian Wang, Zehai Gao, Hamid Mirzeei, An-Dong Xiang, Feng Guo","doi":"10.1016/j.mcp.2025.102022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The biggest cause of death worldwide is liver cancer. Despite several initiatives and successes in treatment techniques, only a little improvement has been attained. In order to control this cancer, new therapeutic strategies are therefore required. Here, we evaluated the effects of doxorubicin and the milk thistle plant phytochemical Silymarin on liver cancer through apoptosis, autophagy, and Wnt signaling.</p><p><strong>Methods: </strong>Silymarin both alone and together with doxorubicin was administered to induce cytotoxicity in the H22 cell line. qRT-PCR and Western blot analyses, the genes related to autophagy, Wnt signals, and cell death were examined.</p><p><strong>Results: </strong>Doxorubicin and Silymarin both individually and combined dramatically slowed down H22 cells growth. Additionally, there was a significant drop in the Bcl-2 protein and a considerable rise in the caspase 8 and Bax proteins. LC3-I, LC3-II, and Beclin 1 have been all shown to be significantly elevated. Moreover, there was a substantial decrease in the expression of genes involved in the Wnt pathway, including cyclin D1, β-catenin, ZEB1, and Twist. The levels of AMPK were decreased in Silymarin with Doxorubicin alone and in combination, whereas VASP, VEGF, and HIF-1a were lowest.</p><p><strong>Conclusion: </strong>Silymarin may enhance anti-tumor effects of doxorubicin through modulating autophagy, angiogenesis, and apoptosis, in-vitro.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":" ","pages":"102022"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mcp.2025.102022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The biggest cause of death worldwide is liver cancer. Despite several initiatives and successes in treatment techniques, only a little improvement has been attained. In order to control this cancer, new therapeutic strategies are therefore required. Here, we evaluated the effects of doxorubicin and the milk thistle plant phytochemical Silymarin on liver cancer through apoptosis, autophagy, and Wnt signaling.

Methods: Silymarin both alone and together with doxorubicin was administered to induce cytotoxicity in the H22 cell line. qRT-PCR and Western blot analyses, the genes related to autophagy, Wnt signals, and cell death were examined.

Results: Doxorubicin and Silymarin both individually and combined dramatically slowed down H22 cells growth. Additionally, there was a significant drop in the Bcl-2 protein and a considerable rise in the caspase 8 and Bax proteins. LC3-I, LC3-II, and Beclin 1 have been all shown to be significantly elevated. Moreover, there was a substantial decrease in the expression of genes involved in the Wnt pathway, including cyclin D1, β-catenin, ZEB1, and Twist. The levels of AMPK were decreased in Silymarin with Doxorubicin alone and in combination, whereas VASP, VEGF, and HIF-1a were lowest.

Conclusion: Silymarin may enhance anti-tumor effects of doxorubicin through modulating autophagy, angiogenesis, and apoptosis, in-vitro.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Probes
Molecular and Cellular Probes 生物-生化研究方法
CiteScore
6.80
自引率
0.00%
发文量
52
审稿时长
16 days
期刊介绍: MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.
期刊最新文献
Silymarin plus Doxorubicin exerts the anti-hepatocellular carcinoma effects via Wnt, apoptosis, autophagy and angiogenesis pathways. Clinical value of microRNA-4449 of non-small cell lung cancer patients undergoing thoracic paravertebral block thoracotomy The role of APOA1-AS in colorectal cancer: Investigating its association with malignant biological behaviors Serum exosomal miR-454-3p contributes to malignant progression of lung cancer by inhibiting HHEX Clinical significance analysis of microRNA-199a-3p in gingival crevicular fluid for patients with chronic periodontitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1