Beyond the Known: Emerging Insights into Cation Disorder in Multinary Compounds

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-08 DOI:10.1021/acsami.5c03065
Jisu Jung, Neul Ha, Wooseok Yang
{"title":"Beyond the Known: Emerging Insights into Cation Disorder in Multinary Compounds","authors":"Jisu Jung, Neul Ha, Wooseok Yang","doi":"10.1021/acsami.5c03065","DOIUrl":null,"url":null,"abstract":"Material properties have been traditionally tuned through crystal structure and morphology control, synthesis method development, and specific crystal facets and composition manipulation. Recently, cation disorder in multication materials has emerged as a promising approach for tailoring material characteristics. However, understanding and controlling cation disorders and their effects on material properties remain challenging. This perspective elucidates the known fundamental mechanisms of cation disorder based on thermodynamic theory and discusses methods for controlling and analyzing them and their effects on material properties. In addition, we explored the emerging yet largely unknown phenomena and strategies in cation disorder research. Furthermore, we address the ambiguities in the conventional definitions of cation disorders, highlighting diverse disorder patterns and their correlations with changes in material properties. Our study emphasizes integrating experimental efforts with data science, simulations, and AI modeling to deepen our understanding of the phenomenon. Such collaborative approaches can enhance our ability to control cation disorders, facilitating their application in real-world technologies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"29 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03065","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Material properties have been traditionally tuned through crystal structure and morphology control, synthesis method development, and specific crystal facets and composition manipulation. Recently, cation disorder in multication materials has emerged as a promising approach for tailoring material characteristics. However, understanding and controlling cation disorders and their effects on material properties remain challenging. This perspective elucidates the known fundamental mechanisms of cation disorder based on thermodynamic theory and discusses methods for controlling and analyzing them and their effects on material properties. In addition, we explored the emerging yet largely unknown phenomena and strategies in cation disorder research. Furthermore, we address the ambiguities in the conventional definitions of cation disorders, highlighting diverse disorder patterns and their correlations with changes in material properties. Our study emphasizes integrating experimental efforts with data science, simulations, and AI modeling to deepen our understanding of the phenomenon. Such collaborative approaches can enhance our ability to control cation disorders, facilitating their application in real-world technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
A Soft Patch for Dynamic Myocardial Infarction Monitoring Biomass-Derived Carbon and Carbon Nanofiber-Integrated Electrospun Janus Membranes: A New Frontier in Membrane Distillation Bioinspired Structural Color Hydrogel Skin from Nonclose-Packed Colloidal Crystal Arrays for Epidermal Sensing An Oxidative Stress Nanoamplifier with Efficient Non-Fenton-Type Hydroxyl Radical Generation and Sulfur Dioxide Release for Synergistic Treatment of Tumor Beyond the Known: Emerging Insights into Cation Disorder in Multinary Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1